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1. Introduction

1.1. Preface. In these notes we discuss several quantitative definitions of the broad and vague notion of
complexity, especially from the viewpoint of dynamical systems, focusing on transformations on the Can-
tor set, in particular shift dynamical systems. The first part reviews dynamical entropy, the asymptotic
exponential growth rate of the number of patterns or available information, uncertainty, or randomness
in a system as the window size grows. The second part treats the more precise complexity function,
which counts the actual number of patterns of each size, and then several of its variations. In the third
part we present a new quantity that measures the balance within a system between coherent action of
the whole and independence of its parts. There is a vast literature on these matters, new papers full
of new ideas are appearing all the time, and there are plenty of questions to be asked and investigated
with a variety of approaches. (Our list of references is in no way complete.) Some of the attractiveness
of the subject is due to the many kinds of mathematics that it involves: combinatorics, number theory,
probability, and real analysis, as well as dynamics. For general background and useful surveys, see for
example [3, 11,29,31,47,48,53,69].

Parts of these notes are drawn from earlier writings by the author or from theses of his students
Kathleen Carroll and Benjamin Wilson (see also [20, 54]). I thank the participants, organizers, and
supporters of the CIMPA Research School cantorsalta2015, Dynamics on Cantor Sets, for the opportunity
to participate and the incentive to produce these notes.

1.2. Complexity and entropy. An elementary question about any phenomenon under observation is,
how many possibilities are there. A system that can be in one of a large but finite number of states
may be thought to be more complex than one that has a choice among only a few. Then consider a
system that changes state from time to time, and suppose we note the state of the system at each time.
How many possible histories, or trajectories, can there be in a time interval of fixed length? This is
the complexity function, and it provides a quantitative way to distinguish relatively simple systems (for
example periodic motions) from more complicated (for example “chaotic”) ones. In systems with a lot
of freedom of motion the number of possible histories may grow very rapidly as the length of time it is
observed increases. The exponential growth rate of the number of histories is the entropy. While it may
seem to be a very crude measure of the complexity of a system, entropy has turned out to be the single
most important and useful number that one can attach to a dynamical system.

1.3. Some definitions and notation. A topological dynamical system is a pair (X,T ), where X is a
compact Hausdorff space (usually metric) and T : X → X is a continuous mapping. In these notes X
is usually the Cantor set, often in a specific representation as a subshift or as the set of infinite paths
starting at the root in a Bratteli diagram—see below. A measure-preserving system (X,B, T, µ) consists
of a measure space (X,B, µ) and a measure-preserving transformation T : X → X. Often no generality
is lost in assuming that (X,B, µ) is the Lebesgue measure space of the unit interval, and in any case
usually we assume that µ(X) = 1. T is assumed to be defined and one-to-one a.e., with T−1B ⊂ B and
µT−1 = µ. The system is called ergodic if for every invariant measurable set (every B ∈ B satisfying
µ(B4T−1B) = 0) either µ(B) = 0 or µ(X \B) = 0.

A homomorphism or factor mapping between topological dynamical systems (X,T ) and (Y, S) is a
continuous onto map φ : X → Y such that φT = Sφ. We say Y is a factor of X, and X is an extension
of Y. If φ is also one-to-one, then (X,T ) and (Y,M) are topologically conjugate and φ is a topological
conjugacy. A homomorphism or factor mapping between measure-preserving systems (X,B, T, µ) and
(Y,B, S, ν) is a map φ : X → Y such that φ−1C ⊂ B, φT = Sφ a.e., and µφ−1 = ν. If in addition φ is
one-to-one a.e., equivalently φ−1C = B up to sets of measure 0, then φ is an isomorphism.

We focus in these notes especially on topological dynamical systems which are shift dynamical systems.
Let A be a finite set called an alphabet. The elements of this set are letters and shall be denoted by
digits. A sequence is a one-sided infinite string of letters and a bisequence is an infinite string of letters
that extends in two directions. The full A-shift, Σ(A), is the collection of all bisequences of symbols
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from A. If A has n elements,

Σ(A) = Σn = AZ = {x = (xi)i∈Z | xi ∈ A for all i ∈ Z}.

The one-sided full A-shift is the collection of all infinite sequences of symbols from A and is denoted

Σ+(A) = Σ+
n = AN = {x = (xi)i∈N | xi ∈ A for all i ∈ N}.

We also define the shift transformation σ : Σ(A)→ Σ(A) and Σ+(A)→ Σ+(A) by

(σx)i = xi+1 for all i.

The pair (Σn, σ) is called the n-shift dynamical system.

We give A the discrete topology and Σ(A) and Σ+(A) the product topology. Furthermore, the topolo-
gies on Σ(A) and Σ+(A) are compatible with the metric d(x, y) = 1/2n, where n = inf{|k| | xk 6= yk}
[47]. Thus two elements of Σ(A) are close if and only if they agree on a long central block. In a one-sided
shift, two elements are close if and only if they agree on a long initial block.

A subshift is a pair (X,σ) (or (X+, σ)), where X ⊂ Σn (or X+ ⊂ Σ+
n ) is a nonempty, closed, shift-

invariant set. We will be concerned primarily with subshifts of the 2-shift dynamical system.

A finite string of letters fromA is called a block and the length of a block B is denoted |B|. Furthermore,
a block of length n is an n-block. A formal language is a set L of blocks, possibly including the empty
block ε, on a fixed finite alphabet A. The set of all blocks on A, including the empty block ε, is denoted
by A∗. Given a subshift (X,σ) of a full shift, let Ln(X) denote the set of all n-blocks that occur in
points in X. The language of X is the collection

L(X) =

∞⋃
n=0

Ln(X).

A shift of finite type (SFT) is a subshift determined by excluding a finite set of blocks.

Let A be a finite alphabet. A map θ : A → A∗ is called a substitution. A substitution θ is extended
to A∗ and AN by θ(b1b2 . . . ) = θ(b1)θ(b2) . . . . A substitution θ is called primitive if there is m such that
for all a ∈ A the block θm(a) contains every element of A.

There is natural dynamical system associated with any sequence. Given a one-sided sequence u, we
let X+

u be the closure of {σnu|n ∈ N}, where σ is the usual shift. Then (X+
u , σ) is the dynamical system

associated with u. For any sequence u, denote by L(u) the family of all subblocks of u.

Exercise 1.1. Show that X+
u consists of all the one-sided sequences on A all of whose subblocks are

subblocks of u: X+
u = {x : L(x) ⊂ L(u)}.

In a topological dynamical system (X,T ), a point x ∈ X is called almost periodic or syndetically
recurrent if for every ε > 0 there is some N = N(ε) such that the set {n ≥ 0 : d(Tnx, x) < ε} has gaps
of size at most N. If X is a subshift, then x ∈ X is almost periodic if and only if every allowed block in
x appears in x with bounded gaps.

A topological dynamical system (X,T ) is minimal if one of the following equivalent properties holds:

1. X contains no proper closed invariant set;
2. X is the orbit closure of an almost periodic point;
3. every x ∈ X has a dense orbit in X.

The complexity function of a language L is the function pL(n) = card(L ∩ An), n ≥ 0. This is
an elementary, although possibly complicated and informative, measure of the size or complexity of a
language and, if the language is that of a subshift, of the complexity of the associated symbolic dynamical
system. Properties of this function (for example its asymptotic growth rate, which is the topological
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entropy of the associated subshift) and extensions and variations comprise most of the subject matter
of these notes.

A Bratteli diagram is a graded graph whose set V of vertices is the disjoint union of finite sets Vn, n =
0, 1, 2, . . . ; V0 consists of a single vertex v0, called the root; and the set E of edges is also the disjoint
union of sets En, n = 1, 2, . . . such that the source vertex of each edge e ∈ En is in Vn−1 and its range
vertex is in Vn. Denote by X the set of all infinite directed pathsx = (xn), xn ∈ En for all n ≥ 1, in
this graph that begin at the root. X is a compact metric space when we agree that two paths are close
if they agree on a long initial segment. Except in some degenerate situations the space X is infinite,
indeed uncountable, and homeomorphic to the Cantor set.

Suppose we fix a linear order on the set of edges into each vertex. Then the set of paths X is partially
ordered as follows: two paths x and y are comparable if they agree from some point on, in which case we
say that x < y if at the last level n where they are different, the edge xn of x is smaller than the edge
yn of y. A map T , called the Vershik map, is defined by letting Tx be the smallest y that is larger than
x, if there is one. There may be maximal paths x for which Tx is not defined, as well as minimal paths.
In nice situations, T is a homeomorphism after the deletion of perhaps countably many maximal and
minimal paths and their orbits. If the diagram is simple—which means that for every n there is m > n
such that there is a path in the graph from every v ∈ Vn to every w ∈ Vm—and if there are exactly one
maximal path xmax and exactly one minimal path xmin, then one may define Txmax = xmin and arrive
at a minimal homeomorphism T : X → X. See [14,25] for surveys on Bratteli-Vershik systems.

There are several results concerning the realization of measure-preserving systems as topological dy-
namical systems up to measure-theoretic isomorphism.

1. The Jewett-Krieger Theorem states that every non-atomic ergodic measure-preserving system on a
Lebesgue space is measure-theoretically isomorphic to a system (X,B, µ, T ) in which X is the Cantor
set, B is the completion of the Borel σ-algebra of X, T is a minimal homeomorphism (every orbit is
dense), and µ is a unique T -invariant Borel probability measure on X.

2. The Krieger Embedding Theorem says that every ergodic measure-preserving system (X,B, µ, T )
of finite entropy (see below) is measure-theoretically isomorphic to a subsystem of any full shift which
has strictly larger (topological) entropy—see below—with a shift-invariant Borel probability measure.
Thus full shifts are “universal” in this sense. The proof is accomplished by producing a finite measurable
partition of X such that coding orbits according to visits of the members of the partition produces a
map to the full shift that is one-to-one a.e.

3. Krieger proved also that such an embedding is possible into any mixing shift of finite type (see below)
that has strictly larger topological entropy than the measure-theoretic entropy of (X,B, µ, T ). Moreover,
he gave necessary and sufficient conditions that an expansive homeomorphism of the Cantor set be
topologically conjugate to s subshift of a given mixing shift of finite type. “There is a version of the finite
generator theorem for ergodic measure preserving transformations of finite entropy, that realizes such a
transformation by means of an invariant probability measure of any irreducible and aperiodic topological
Markov chain, whose topological entropy exceeds the entropy of the transformation ([4], [2 28]). One
can say that a corollary of theorem 3 achieves for minimal expansive homeomorphisms of the Cantor
discontinuum what the finite generator theorem does for measure preserving transformations.” [43]

4. Lind and Thouvenot [46] proved that hyperbolic toral automorphisms (the matrix has no eigen-
value of modulus 1) are universal. This was extended by Quas and Soo [57] to quasi-hyperbolic toral
automorphisms (no roots of unity among the eigenvalues), and they also showed that the time-1 map of
the geodesic flow on a compact surface of constant negative curvature is universal [58].

5. Every minimal homeomorphism of the Cantor set is topologically conjugate to the Vershik map on
a simple Bratteli diagram with unique maximal and minimal paths [33,34].

6. Every ergodic measure-preserving system is measure-theoretically isomorphic to a minimal Bratteli-
Vershik system with a unique invariant Borel probability measure [66,67].
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2. Asymptotic exponential growth rate

2.1. Topological entropy. Let X be a compact metric space and T : X → X a homeomorphism.

First definition [2]: For an open cover U of X, let N(U) denote the minimum number of elements in a
subcover of U , H(U) = logN(U),

h(U , T ) = lim
n→∞

1

n
H(U ∨ T−1U ∨ . . . ∨ T−n+1U),

and

h(T ) = sup
U
h(U , T ).

Second definition [17]: For n ∈ N and ε > 0, a subset A ⊂ X is called n, ε−separated if given a, b ∈ A
with a 6= b, there is k ∈ {0, . . . , n−1} with d(T ka, T kb) ≥ ε. We let S(n, ε) denote the maximum possible
cardinality of an n, ε-separated set. Then

h(T ) = lim
ε→0+

lim sup
n→∞

1

n
logS(n, ε).

Third definition [17]: For n ∈ N and ε > 0, a subset A ⊂ X is called n, ε-spanning if given x ∈ X
there is a ∈ A with d(T ka, T kx) ≤ ε for all k = 0, . . . , n−1. We let R(n, ε) denote the minimum possible
cardinality of an n, ε-spanning set. Then

h(T ) = lim
ε→0+

lim sup
n→∞

1

n
logR(n, ε).

Exercise 2.1. If (X,T ) is a subshift (X = a closed shift-invariant subset of the set of all doubly infinite
sequences on a finite alphabet, T = σ = shift transformation), then

h(σ) = lim
n→∞

log(number of n-blocks seen in sequences in X)

n
.

Theorem 2.1 (“Variational Principle”). h(T ) = sup{hµ(T ) : µ is an invariant (ergodic) Borel proba-
bility measure on X}.

2.2. Ergodic-theoretic entropy. A finite (or sometimes countable) measurable partition

α = {A1, . . . , Ar}

of X is thought of as the set of possible outcomes of an experiment (performed at time 0) or as an
alphabet of symbols used to form messages (the experiment could consist of receiving and reading one
symbol). The entropy of the partition is

H(α) =
∑
A∈α
−µ(A) logµ(A) (the logs can be base e, 2, or r);

it represents the amount of information gained=amount of uncertainty removed when the experiment
is performed or one symbol is received (averaged over all possible states of the world—the amount of
information gained if the outcome is A (i.e., we learn to which cell of α the world actually belongs) is
− logµ(A)). (Note that this is large when µ(A) is small.) Notice that the information gained when we
learn that an event A occurred is additive for independent events.

The partition

T−1α = {T−1A : A ∈ α}
represents performing the experiment α (or reading a symbol) at time 1, and α ∨ T−1α ∨ . . . ∨ T−n+1α
represents the result of n repetitions of the experiment (or the reception of a string of n symbols). Then
H(α ∨ T−1α ∨ . . .∨ T−n+1α)/n is the average information gain per repetition (or per symbol received),
and

h(α, T ) = lim
n→∞

1

n
H(α ∨ T−1α ∨ . . . ∨ T−n+1α)
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is the long-term time average of the information gained per unit time. (This limit exists because of the
subadditivity of H: H(α ∨ β) ≤ H(α) +H(β).)

The entropy of the system (X,B, µ, T ) is defined to be

hµ(T ) = sup
α
h(α, T ),

the maximum information per unit time available from any finite- (or countable-) state stationary process
generated by the system.

Theorem 2.2 (Kolmogorov-Sinai). If T has a finite generator α—a partition α such that the smallest
σ-algebra that contains all T jα, j ∈ Z, is B—then hµ(T ) = h(α, T ). (Similarly if T has a countable
generator with finite entropy.)

Theorem 2.3. If {αk} is an increasing sequence of finite partitions which generates B up to sets of
measure 0, then h(αk, T )→ h(T ) as k →∞.

2.3. Conditioning. For a countable measurable partition α and sub-σ-algebra F of B, we define the
conditional information function of α given F by

Iα|F (x) = −
∑
A∈α

logµ(A|F)(x)χA(x);

this represents the information gained by performing the experiment α (if the world is in state x) after
we already know for each member of F whether or not it contains the point x. The conditional entropy
of α given F is

H(α|F) =

∫
X

Iα|F (x)dµ(x);

this is the average over all possible states x of the information gained from the experiment α. When F
is the σ-algebra generated by a partition β, we often just write β in place of F .

Proposition 2.4. 1. H(α ∨ β|F) = H(α|F) +H(β|B(α) ∨ F).
2. H(α|F) is increasing in its first variable and decreasing in its second.

Theorem 2.5. For any finite (or countable finite-entropy) partition α,

h(α, T ) = H(α|B(T−1α ∨ T−2α ∨ . . .)).

2.4. Examples.

(1) Bernoulli shifts: h = −
∑
pi log pi . Consequently B(1/2, 1/2) is not isomorphic to B(1/3, 1/3, 1/3).

(2) Markov shifts: h = −
∑
pi
∑
Pij logPij .

(3) Discrete spectrum: h = 0 . (Similarly for rigid systems—ones for which there is a sequence
nk → ∞ with Tnkf → f for all f ∈ L2.) Similarly for any system with a one-sided generator,
for then h(α, T ) = H(α|α∞1 ) = H(α|B) = 0. It’s especially easy to see for an irrational rotation
of the circle, for if α is the partition into two disjoint arcs, then αn0 only has 2(n+ 1) sets in it.

(4) Products: h(T1 × T2) = h(T1) + h(T2) .
(5) Factors: If π : T → S, then h(T ) ≥ h(S) .
(6) Bounded-to-One Factors: h(T ) = h(S). See [52, p. 56].
(7) Skew products: h(T × {Sx}) = h(T ) + hT (S) . Here the action is (x, y)→ (Tx, Sxy), with each

Sx a m.p.t. on Y, and the second term is the fiber entropy

hT (S) = sup{
∫
X

H(β|S−1x β ∨ S−1x S−1Txβ ∨ . . .)dµ(x) : β is a finite partition of Y }.

(8) Automorphism of the torus: h =
∑
|λi|>1

log |λi| (the λi are the eigenvalues of the integer matrix

with determinant ±1).
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(9) Pesin’s Formula: If µ� m (Lebesgue measure on the manifold), then

hµ(f) =

∫ ∑
λk(x)>0

qk(x)λk(x) dµ(x),

where the λk(x) are the Lyapunov exponents and qk(x) = dim(Vk(x)\Vk−1(x)) are the dimensions
of the corresponding subspaces.

(10) Induced transformation (first-return map): For A ⊂ X, h(TA) = h(T )/µ(A).
(11) Finite rank ergodic: h = 0 .

Proof. Suppose rank = 1, let P be a partition into two sets (labels 0 and 1), let ε > 0. Take a
tower of height L with levels approximately P -constant (possible by rank 1; we could even take
them P -constant) and µ(junk) < ε. Suppose we follow the orbit of a point N � L steps; how
many different P,N -names can we see? Except for a set of measure < ε, we hit the junk n ∼ εN
times. There are L starting places (levels of the tower); C(N,n) places with uncertain choices of
0, 1; and 2n ways to choose 0 or 1 for these places. So the sum of µ(A) logµ(A) over A in Pn−10

is ≤ the log of the number of names seen in the good part minus the log of 2N (ε/2N ) log(ε/2N ),
and dividing by N gives

logL

N
+NH(ε, 1− ε) +

Nε

N
+
ε(− log ε+N)

N
∼ 0.

Similarly for any finite partition P. Also for rank r—then we have to take care (not easily) about
the different possible ways to switch columns when spilling over the top. �

Exercise 2.2. Prove the statements in 1–5 above.

2.5. Kolmogorov complexity. The (Kolmogorov) complexity K(w) of a finite sequence w on a finite
alphabet is defined to be the length of the shortest program that when input to a fixed universal Turing
machine produces output w (or at least a coding of w by a block of 0’s and 1’s). For a topological
dynamical system (X,T ) and open cover U = {U0, . . . , Ur−1} of X, for x ∈ X and n ≥ 1, we consider
the set of codings of the initial n points in the orbit of x according to the partition U : let C(x, n) = the
set of n-blocks w on {0, . . . , r − 1} such that T jx ∈ Uwj

, j = 1, . . . , n. Then we define the upper and
lower complexity of the orbit of a point x ∈ X to be

supK(x, T ) = sup
U

lim sup
n→∞

min{K(w)

n
: w ∈ C(x, n)}

and

inf K(x, T ) = sup
U

lim inf
n→∞

min{K(w)

n
: w ∈ C(x, n)}

Theorem 2.6 (Brudno, White). If µ is an ergodic invariant measure on (X,T ), then

supK(x, T ) = inf K(x, T ) = hµ(X,T ) a.e. dµ(x).

3. Counting patterns

A complexity function px(n) counts the number of patterns of “size” n that appear in an object x
under investigation. One of the simplest situations (one might suppose) is that of a one-dimensional
sequence u on a finite alphabet A. If u is a sequence or bisequence, the complexity function of u, denoted
pu, maps n to the number of blocks of length n that appear in u. If X is a subshift, then pX(n) is the
number of blocks of length n that appear in L(X). In higher-dimensional symbolic dynamical systems
one may count the number of configurations seen in rectangular regions, and in tilings one may count
the number of patches of tiles of a fixed size that are equivalent under translations, or, if preferred, under
translations and rotations. The asymptotic exponential growth rate of the complexity function,

(3.1) lim sup
n→∞

log px(n)

n
,
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is a single number that measures the complexity of x in one sense, while the function px itself is a precise
measurement of how the complexity or richness of the object grows with size. There is a huge literature
on complexity functions of various kinds for various structures; see for example [3, 11, 30, 31, 48]. Here
we look at a few representative examples.

Exercise 3.1. [29] Show that the growth rate of the complexity function pX of a subshift (X,σ) is
an invariant of topological conjugacy by proving that if (X,σ) and (Y, σ) are topologically conjugate
subshifts on finite alphabets, then there is a constant c such that

(3.2) pX(n− c) ≤ pY (n) ≤ pX(n+ c) for all n > c.

3.1. The complexity function in one-dimensional symbolic dynamics. Let u be a one or two-
sided infinite sequence on a finite alphabet A, and let pu(n) denote the number of n-blocks in u. Since
every block continues in at least one direction, pu(n+ 1) ≥ pu(n) for all n.

Exercise 3.2. Find the complexity functions of the bisequence u = . . . 12121212321212121 . . . and the
one-sided sequence v = 321212121 . . . .

Hedlund and Morse [49, Theorems 7.3 and 7.4] showed that a two-sided sequence u is periodic if and
only if there is a k such that pu(k + 1) = pu(k), equivalently if and only if there is an n such that
pu(n) ≤ n.

Exercise 3.3. Show that for one-sided sequences u the following conditions are equivalent: (1) there is
an n such that pu(n) ≤ n;
(2) there is a k such that pu(k + 1) = pu(k).
(3) u is eventually periodic;
(4) pu is bounded.
(Hint: For (2) implies (3), note that each k-block in u must have a unique right extension to a (k + 1)-
block, and that some k-block must appear at least twice in u.)

Exercise 3.4. Show that for a two-sided sequence u, if there is an n such that pu(n) ≤ n, then u is
periodic.

3.2. Sturmian sequences. Hedlund and Morse [50] defined Sturmian sequences as those that have the
smallest possible complexity among non-eventually-periodic sequences.

Definition 3.1. A sequence u is called Sturmian if it has complexity pu(n) = n+ 1 for all n.

If u is Sturmian, then pu(1) = 2. This implies that Sturmian sequences are over a two-letter alphabet.
For the duration of this discussion on Sturmian systems, we fix the alphabet A = {0, 1}.
Exercise 3.5. The Fibonacci substitution is defined by:

φ : 0 7→ 01

1 7→ 0.

The fixed point of the Fibonacci substitution, f = 0100101001001010010100100101..., is called the
Fibonacci sequence. Show that f is a Sturmian sequence.

Definition 3.2. A set S of blocks is balanced if for any pair of blocks u, v of the same length in S,
||u|1 − |v|1| ≤ 1, where |u|1 is the number of occurrences of 1 in u and |v|1 is the number of occurences
of 1 in v.

It immediately follows that if a sequence u is balanced and not eventually periodic then it is Sturmian.
This is a result of the fact that if u is aperiodic, then pu(n) ≥ n+ 1 for all n, and if u is balanced then
pu(n) ≤ n+ 1 for all n. In fact, it can be proved that a sequence u is balanced and aperiodic if and only
if it is Sturmian [48]. Furthermore, it immediately follows that any shift of a Sturmian sequence is also
Sturmian.

Sturmian sequences also have a natural association to lines with irrational slope. To see this, we
introduce the following definitions.
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Definition 3.3. Let α and β be real numbers with 0 ≤ α, β ≤ 1. We define two infinite sequences xα,β
and x′α,β by

(xα,β)n = bα(n+ 1) + βc − bαn+ βc
(x′α,β)n = dα(n+ 1) + βe − dαn+ βe

for all n ≥ 0. The sequence xα,β is the lower mechanical sequence and x′α,β is the upper mechanical
sequence with slope α and intercept β.

The use of the words slope and intercept in the above definitions stems from the following graphical
interpretation. Consider the line y = αx + β. The points with integer coordinates that sit just below
this line are Fn = (n, bαn + βc). The straight line segment connecting two consecutive points Fn and
Fn+1 is horizontal if xα,β = 0 and diagonal if xα,β = 1. Hence, the lower mechanical sequence can be
considered a coding of the line y = αx + β by assigning to each line segment connecting Fn and Fn+1

a 0 if the segment is horizontal and a 1 if the segment is diagonal. Similarly, the points with integer
coordinates that sit just above this line are F ′n = (n, dαn+ βe). Again, we can code the line y = αx+ β
by assigning to each line segment connecting F ′n and F ′n+1 a 0 if the segment is horizontal and a 1 if the
segment is diagonal. This coding yields the upper mechanical sequence [48].

A mechanical sequence is rational if the line y = αx+β has rational slope and irrational if y = αx+β
has irrational slope. In [48] it is proved that a sequence u is Sturmian if and only if u is irrational
mechanical. In the following example we construct a lower mechanical sequence with irrational slope,
thus producing a Sturmian sequence.

Example 3.4. Let α = 1/τ2, where τ = (1 +
√

5)/2 is the golden mean, and β = 0. The lower
mechanical sequence xα,β is constructed as follows:

(xα,β)0 =b1/τ2c = 0

(xα,β)1 =b2/τ2c − b1/τ2c = 0

(xα,β)2 =b3/τ2c − b2/τ2c = 1

(xα,β)3 =b4/τ2c − b3/τ2c = 0

(xα,β)4 =b5/τ2c − b4/τ2c = 0

(xα,β)5 =b6/τ2c − b5/τ2c = 1

...

Further calculation shows that xα,β = 0010010100... = 0f . Note that a similar calculation gives x′α,β =
1010010100... = 1f, hence the Fibonacci sequence is a shift of the lower and upper mechanical sequences
with slope 1/τ2 and intercept 0.

Exercise 3.6. Show that while Sturmian sequences are aperiodic, they are syndetically recurrent: every
block that occurs in a Sturmian sequence occurs an infinite number of times with bounded gaps.

As a result of the preceding Exercise, any block in Ln(u) appears past the initial position and can thus
be extended on the left. Since there are n + 1 blocks of length n, it must be that exactly one of them
can be extended to the left in two ways.

Definition 3.5. In a Sturmian sequence u, the unique block of length n that can be extended to the
left in two different ways is called a left special block, and is denoted Ln(u). The sequence l(u) which
has the Ln(u)’s as prefixes is called the left special sequence or characteristic word of X+

u [31, 48].

In a similar fashion, we define the right special blocks of Ln(u).

Definition 3.6. In a Sturmian sequence u, the unique block of length n that can be extended to the
right in two different ways is called a right special block, and is denoted Rn(u). The block Rn(u) is
precisely the reverse of Ln(u) [31].



10 KARL PETERSEN

We now address how to determine the left special sequence in a Sturmian system.

Since every Sturmian sequence u is irrational mechanical, there is a line with irrational slope α asso-
ciated to u. We use this α to determine the left special sequence of X+

u .

Let (d1, d2, ..., dn, ...) be a sequence of integers with d1 ≥ 0 and dn > 0 for n > 1. We associate a
sequence (sn)n≥−1 of blocks to this sequence by

s−1 = 1, s0 = 0, sn = sdnn−1sn−2.

The sequence (sn)n≥−1 is a standard sequence, and (d1, d2, ..., dn, ...) is its directive sequence. We can
then determine the left special sequence of X+

u with the following proposition stated in [48].

Proposition 3.7. Let α = [0, 1 + d1, d2, ....] be the continued fraction expansion of an irrational α with
0 < α < 1, and let (sn) be the standard sequence associated to (d1, d2, ...). Then every sn, n ≥ 1, is a
prefix of l and

l = lim
n→∞

sn.

This is illustrated in the following two examples.

Example 3.8. Let α = 1/τ2, where τ = (1 +
√

5)/2 is the golden mean. The continued fraction
expansion of 1/τ2 is [0, 2, 1]. By the above proposition d1 = 1, d2 = 1,
d3 = 1, d4 = 1, .... The standard sequence associated to (d1, d2, ...) is constructed as follows:

s1 =sd10 s−1 = 01

s2 =sd21 s0 = 010

s3 =sd32 s1 = 01001

s4 =sd43 s2 = 01001010

...

Continuing this process, the left special sequence of X+
u , where u is a coding of a line with slope 1/τ2, is

l = 010010100100101001... = f.

It follows that the left special sequence of X+
f is f .

3.3. The Morse sequence. The Morse sequence, more properly called the Prouhet-Thue-Morse se-
quence, is the fixed point

ω = 0110100110010110....

of the substitution 0→ 01, 1→ 10. The complexity function of the Morse sequence is more complicated
than that of the Fibonacci sequence. For the Morse sequence, pω(1) = 2, pω(2) = 4, and, for n ≥ 3, if
n = 2r + q + 1, r ≥ 0, 0 < q ≤ 2r, then

pω(n) =

{
6(2r−1) + 4q if 0 < q ≤ 2r−1

8(2r−1) + 2q if 2r−1 < q ≤ 2r.

The complexity function of the Morse sequence is discussed in more detail in [31, Chapter 5]
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3.4. In higher dimensions, tilings, groups, etc. The complexity of configurations and tilings in
higher-dimensional spaces and even groups is an area of active investigation. A central question has been
the possibility of generalizing the observation of Hedlund and Morse (Exercise 3.3) to higher dimensions:
any configuration of low enough complexity, in some sense, should be eventually periodic, in some sense.
A definite conjecture in this direction was stated in 1997 by M. Nivat in a lecture in Bologna (see [27]):
For a d-dimensional configuration x : Zd → A on a finite alphabet A, define its rectangular complexity
function to be the function Px(m1, . . . ,md) which counts the number of different m1 × · · · × md box
configurations seen in x. The Nivat Conjecture posits that if x is a two-dimensional configuration on
a finite alphabet for which there exist m1,m2 ≥ 1 such that Px(m1,m2) ≤ m1m2, then x is periodic:
there is a vector w ∈ Z2 such that x(v + w) = x(v) for all v ∈ Z2.

Cassaigne [21] characterized all two-dimensional configurations with complexity function Px(m1,m2) =
m1m2 + 1.

Vuillon [68] considered tilings of the plane generated by a cut-and-project scheme. Recall (see [4]) that
Sturmian sequences code (according to the two possible tile=interval lengths) tilings of a line obtained
by projecting onto it the points in the integer lattice that are closest to it along another, transverse,
line. Vuillon formed tilings of the plane with three types of diamonds by projecting onto a plane points
of the cubical lattice in Z3 and proved that the number of different m×n parallelograms is mn+m+n.

Berthé and Vuillon [13] showed that these two-dimensional configurations code the Z2 action of two
translations on the 2-torus. By applying a one-block code from the three-letter alphabet to a two-letter
alphabet, they produced for each m and n a two-dimensional configuration which is syndetically recurrent
and is not periodic in any rational direction but has the relatively low rectangular complexity function
P (m,n) = mn + n. Two-dimensional configurations with this complexity function were characterized
in [12].

Sander and Tijdeman [61–63] studied the complexities of configurations x : Zd → {0, 1} in terms of
the number of distinct finite configurations seen under a sampling window. Let A = {a1, . . . , an}, each
ai ∈ Zd, be a fixed non-empty sampling window, and define

(3.3) Px(A) = card{(x(v + a1), . . . , x(v + an)) : v ∈ Zd}

to be the number of distinct A-patterns in x (written here as ordered |A|-tuples). A natural extension of
(3.3) might be that if there is a nonempty set A ⊂ Zd for which Px(A) ≤ |A|, then x must be periodic:
there is a w ∈ Z\{0} such that x(v+w) = x(v) for all v ∈ Z. Sander and Tijdeman proved the following.

(1) If Px(A) ≤ |A| for some A ⊂ Z with |A| ≤ 3, then x is periodic.
(2) In dimension 1, the observation of Hedlund and Morse generalizes from sampling windows that

are intervals to arbitrary sampling windows: If x ∈ {0, 1}Z satisfies Px(A) ≤ |A| for some
(non-empty) sampling window A, then x is periodic.

(3) There are a non-periodic two-dimensional configuration x : Z2 → {0, 1} and a sampling window
A ⊂ Z2 of size |A| = 4 such that Px(A) = 4 = |A|.

(4) Conjecture: If A ⊂ Z2 is a (non-empty) sampling window that is the restriction to Z2 of a convex
subset of R2 and x : Z2 → {0, 1} satisfies Px(A) ≤ |A|, then x is periodic.

(5) If there is a sampling window A that consists of all points in a rectangle (with both sides parallel
to the coordinate axes) with one side of length 2, and Px(A) ≤ |A|, then x is periodic.

The last statement above was recently improved by Cyr and Kra [23]: If there is a sampling window A
that consists of all points in a rectangle (with both sides parallel to the coordinate axes) with one side
of length 3, and Px(A) ≤ |A|, then x is periodic.

Kari and Szabados [42] (see also [41]) represented configurations in Zd as formal power series in d
variables with coefficients from A and used results from algebraic geometry to study configurations in
Zd which have low complexity in the sense that for some sampling windows A they satisfy Px(A) ≤ |A|.
They proved that in dimension two, any non-periodic configuration x can satisfy such an estimate for
only finitely many rectangular sampling windows A.
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Epifanio, Koskas, and Mignosi [27] made some progress on the Nivat Conjecture by showing that if x
is a configuration on Z2 for which there exist m,n ≥ 1 such that Px(m,n) < mn/144, then x is periodic.
The statement was improved by Quas and Zamboni [59] by combinatorial and geometrical arguments to
replace 1/144 by 1/16, and by Cyr and Kra [24] by arguments involving subdynamics to replace it by
1/2.

We do not give definitions of all the terminology associated with tilings and tiling dynamical systems—
see for example [32,60,64] for background. For a tiling x of Rd that has finite local complexity, one may
define its complexity function Px(r) to be the number of different patches (identical up to translation,
or perhaps translation and rotation) seen in x within spheres of radius r. In analogy with Exercise 3.1
for subshifts, Frank and Sadun [56] and A. Julien [39] (see also [40]) showed that if two minimal tiling
dynamical systems are aperiodic and have finite local complexity, then their complexity functions are
equivalent—within bounded multiples of each other up to bounded translations (or dilations—see the
cited papers for precise statements.)

The investigation of the complexity function and the calculation or even estimation of entropy are
extending to subshifts on groups (see for example [5, 55]) and even on trees [6–8].

Analogues of the Nivat Conjecture for general Delaunay sets in Rd were proved by Lagarias and
Pleasants [44, 45]. Huck and Richard [37] estimate the pattern entropy of “model sets” (certain point
sets that result from cut and project schemes) in terms of the size of the defining window.

Durand and Rigo [26] proved a reformulation of Nivat’s Conjecture by redefining periodicity and using
a different complexity function: A subset E ⊂ Zd is “definable in Presburg arithmetic (Z;<,+)” if and
only if the number RE(n) of different blocks that appear infinitely many times in E is O(nd−1) and
“every section is definable in (Z;<,+)”. We do not attempt to explain the terminology here, but just
note that the subsets of N definable in (N;<,+) correspond exactly to the eventually periodic sequences,
so the theorem of Durand and Rigo may be regarded as an extension of the Hedlund-Morse theorem to
all dimensions.

3.5. Topological complexity. Let (X,T ) be a topological dynamical system. If (X,T ) is a subshift
and U is the time-0 cover (also partition) consisting of the cylinder sets determined by fixing a symbol
at the origin, then the complexity function pX(n) (which by definition is the number of distinct n-
blocks in all sequences in the system) is the minimal possible cardinality of any subcover of Un−10 =
U ∨ T−1U ∨ · · · ∨ T−n+1U ; i.e., in this case pX(n) equals the N(Un−10 ) of the definition of topological
entropy (see Sections 3.1 and 2.1). Blanchard, Host, and Maass [15] took this as the definition of the
topological complexity function: pU (n) = N(Un−10 ) = the minimum possible cardinality of a subcover of
Un−10 .

Theorem 3.9. [15] A topological dynamical system is equicontinuous if and only if every finite open
cover has bounded complexity function. (Cf. Sections 3.1 and ??.)

Exercise 3.7. Discuss this theorem in relation to a Sturmian subshift and the irrational translation on
[0, 1] of which it is an almost one-to-one extension.

They also related the complexity function to concepts of mixing and chaos.

Definition 3.10. A topological dynamical system is scattering if every covering by non-dense open sets
has unbounded complexity function. It is 2-scattering if every covering by two non-dense open sets has
unbounded complexity function.

The following results are from [15].

(1) Every topologically weakly mixing system is scattering.
(2) For minimal systems, 2-scattering, scattering, and topological weak mixing are equivalent.
(3) If every non-trivial closed cover U of X has complexity function satisfying pU (n) ≥ n+ 2 for all

n, then (X,T ) is topologically weakly mixing.
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(4) If (X,T ) has a point of equicontinuity, then there exists an open cover U of X with pU (n) ≤ n+1
for all n.

(5) A system is scattering if and only if its Cartesian product with every minimal system is transitive.
(6) Every scattering system is disjoint from every minimal distal system. (Recall that (X,T ) and

(Y, S) are disjoint if the only closed invariant subset of their Cartesian product that projects
onto both X and Y is all of X × Y .)

4. Balancing freedom and interdependence

4.1. Neurological intricacy. In any system that consists of individual elements there is a tension
between freedom of action of the individuals and coherent action of the entire system. There is maximum
complexity, information, disorder, or randomness when all elements act independently of one another.
At the other extreme, when the elements of the system are strongly linked and the system acts essentially
as a single unit, there is maximum order. In the first situation, it seems that there is little advantage
to the individual elements in being part of a larger system, and the system does not benefit from
possible concerted action by its constituents. In the second situation, most individual elements could be
superfluous, and the system does not benefit from any diversity possibly available from its parts. This
tension between the one and the many, the individual and the state, the soloist and the orchestra, the
part and the whole, is ancient and well known.

It is natural to think that evolving organisms or societies may seek a balance in which the benefits of
diversity and coherence are balanced against their disadvantages. Abrams and Panaggio [1] constructed
a differential equations model to describe the balance between competitive and cooperative pressures to
attempt to explain the prevalence of right-handedness in human populations. (Left-handers may have
an advantage in physical competitions, where opponents are accustomed to face mostly right-handers,
and the population as a whole may benefit from diversity. But left-handers will be at a disadvantage
when faced with objects and situations designed for the comfort of the prevalent right-handers.) Blei [16]
defined measures of interdependence among families of functions in terms of functional dependence among
subfamilies using combinatorics, functional analysis, and probability.

Neuroscientists G. Edelman, O. Sporns, G. Tononi [65] proposed a measure, which they called “neural
complexity”, of the balance between specific and mass action in the brains of higher vertebrates. High
values of this quantity are associated with non-trivial organization of the network; when this is the case,
segregation coexists with integration. Low values are associated with systems that are either completely
independent (segregated, disordered) or completely dependent (integrated, ordered). We will see that
beneath this concept of intricacy there is another (new) basic notion of complexity, that we call average
sample complexity. The definitions and study of intricacy and average sample complexity in dynamics
were initiated in [54,70].

One considers a model that consists of a family X = {Xi : i = 0, 1, . . . , n − 1} of random variables
representing an isolated neural system with n elementary components (maybe groups of neurons), each
Xi taking values in a discrete (finite or countable) set E. For each n ∈ N we define n∗ = {0, 1, . . . , n−1}.
The set n∗ represents the set of sites, and E represents the set of states. It may seem that we are assuming
that the brain is one-dimensional, but not so: the sites may be arranged in some geometrically important
way, but at this stage we only number them and will take the geometry, distances, connections, etc. into
account maybe at some later stage. The elements of the set E (often E = {0, 1}) may encode (probably
quantized) levels of excitation or something analogous. For S ⊂ n∗, XS = {Xi : i ∈ S} Sc = n∗ \ S.
Neural complexity measures the level of interdependence between action at the sites in S and those in
Sc, averaged over all subset S of the set of sites, with some choice of weights.

The entropy of a random variable X taking values in a discrete set E is

H(X) = −
∑
x∈E

Pr{X = x} logPr{X = x}.
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The mutual information between two random variables X and Y over the same probability space
(Ω,F , P ) is

MI(X,Y ) = H(X) +H(Y )−H(X,Y ).

= H(X)−H(X|Y ) = H(Y )−H(Y |X)

Here (X,Y ) is the random variable on Ω taking values in E × E defined by (X,Y )(ω) = (X(ω), Y (ω)).
MI(X,Y ) is a measure of how much Y tells about X (equivalently, how much X tells about Y ).
MI(X,Y ) = 0 if and only if X and Y are independent.

The neural complexity, CN , of the family X = {Xi : i = 0, 1, . . . , n− 1} is defined to be the following
average, over all subfamilies XS = {Xi : i ∈ S}, of the mutual information between XS and XSc :

CN (X) =
1

n+ 1

∑
S⊂n∗

1(
n
|S|
)MI(XS , XSc).

The weights are chosen to be uniform over all subsets of the same size, and then uniform over all sizes.

J. Buzzi and L. Zambotti [18] studied neural complexity in a general probabilistic setting, considering it
as one of a family of functionals on processes that they called intricacies, allowing more general systems
of weights for the averaging of mutual informations. They define a system of coefficients, cnS , to be a
family of numbers satisfying for all n ∈ N and S ⊂ n∗

1. cnS ≥ 0;
2.
∑
S⊂n∗ cnS = 1;

3. cnSc = cnS .

For a fixed n ∈ N let X = {Xi : i ∈ n∗} be a collection of random variables all taking values in the
same finite set. Given a system of coefficients, cnS , the corresponding mutual information functional,
Ic(X), is defined by

Ic(X) =
∑
S⊂n∗

cnSMI(XS , XSc).

Definition 4.1. An intricacy is a mutual information functional satisfying:

1. Exchangeability: invariance under permutations of n∗;
2. Weak additivity: Ic(X,Y ) = Ic(X) +Ic(Y ) for any two independent systems X = {Xi : i ∈ n∗} and
Y = {Yj : j ∈ m∗}.

Theorem 4.2 (Buzzi-Zambotti). Let cnS be a system of coefficients and Ic the associated mutual infor-
mation functional. Ic is an intricacy if and only if there exists a symmetric probability measure λc on
[0, 1] such that

cnS =

∫
[0,1]

x|S|(1− x)n−|S|λc(dx)

Example 4.3. 1. cnS =
1

(n+ 1)

1(
n
|S|
) (Edelman-Sporns-Tononi);

2. For 0 < p < 1,

cnS =
1

2
(p|S|(1− p)n−|S| + (1− p)|S|pn−|S|) (p-symmetric);

3. For p = 1/2, cnS = 2−n (uniform).

Exercise 4.1. Prove that the neural (Edelman-Sporns-Tononi) weights correspond to λ being Lebesgue
measure on [0, 1].

4.2. Topological intricacy and average sample complexity. Let (X,T ) be a topological dynamical
system and U an open cover of X. Given n ∈ N and a subset S ⊂ n∗ define

US =
∨
i∈S

T−iU .
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Definition 4.4. [54, 70] Let cnS be a system of coefficients. Define the topological intricacy of (X,T )
with respect to the open cover U to be

Int(X,U , T ) := lim
n→∞

1

n

∑
S⊂n∗

cnS log

(
N(US)N(USc)

N(Un∗)

)
.

Applying the laws of logarithms and noting the symmetry of the sum with respect to sets S and their
complements leads one to define the following quantity.

Definition 4.5. [54, 70] The topological average sample complexity of T with respect to the open cover
U is defined to be

Asc(X,U , T ) := lim
n→∞

1

n

∑
S⊂n∗

cnS logN(US).

Proposition 4.6. Int(X,U , T ) = 2 Asc(X,U , T )− htop(X,U , T ).

Theorem 4.7. The limits in the definitions of Int(X,U , T ) and Asc(X,U , T ) exist .

As usual this follows from subadditivity of the sequence

bn :=
∑
S⊂n∗

cnS logN(US)

and Fekete’s Subadditive Lemma: For every subadditive sequence an, the limit limn→∞ an/n exists and
is equal to infn an/n.

Exercise 4.2. Prove Fekete’s Lemma.

Proposition 4.8. For each open cover U , Asc(X,U , T ) ≤ htop(X,U , T ) ≤ htop(X,T ), and hence
Int(X,U , T ) ≤ htop(X,U , T ) ≤ htop(X,T ).

In particular, a dynamical system with zero (or relatively low) topological entropy (one that is coherent
or ordered) has zero (or relatively low) topological intricacy.

The intricacy of a subshift (X,σ) with respect to the “time zero open cover” U0 by cylinder sets defined
by the first (or central) coordinate is determined by counting the numbers of different blocks that can
be seen along specified sets of coordinates:

Int(X,U0, σ) = lim
n→∞

1

n

∑
S⊂n∗

cnS log

(
|LS(X)||LSc(X)|
|Ln∗(X)|

)
Example 4.9 (Computing |LS(X)| for the golden mean SFT). Let n = 3, so that n∗ = {0, 1, 2}. The
following figure shows how different numbers of blocks can appear along different sets of coordinates of
the same cardinality: if S = {0, 1} then N(S) = 3, whereas if S = {0, 2}, N(S) = 4.

S = {0, 1}

0 0
0 1
1 0

S = {0, 2}

0 0
0 1
1 0
1 1

|LS(X)| = 3 |LS(X)| = 4

When we average over all subsets S ⊂ n∗, we get an approximation (from above) to Int(X,U0, σ):
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S S |LS(X)| |LSc(X)|
∅ {0, 1, 2} 1 5
{0} {1, 2} 2 3
{1} {0, 2} 2 4
{2} {0, 1} 2 3
{0, 1} {2} 3 2
{0, 2} {1} 4 2
{1, 2} {0} 3 2
{0, 1, 2} ∅ 5 1

Example 4.10 (Computing |LS(X)| for the golden mean SFT).
1

3 · 23
∑
S⊂3∗

log

(
|LS(X)||LSc(X)|
|Ln∗(X)|

)
=

1

24
log

(
64 · 82

56

)
≈ 0.070.

Apparently one needs better formulas for Int and Asc than the definitions, which involve exponentially
many calculations as n grows. Here is a formula that applies to many SFT’s and permits accurate
numerical estimates.

Theorem 4.11. Let X be a shift of finite type with adjacency matrix M such that M2 > 0. Let cnS = 2−n

for all S. Then

Asc(X,U0, σ) =
1

4

∞∑
k=1

log |Lk∗(X)|
2k

.

This formula shows that, as expected, Asc is sensitive to word counts of all lengths and thus is a finer
measurement than htop, which just gives the asymptotic exponential growth rate. Below we will see
examples of systems that can be distinguished by Asc and Int but not by their entropies, or even by
their symbolic complexity functions.

The proof is too long to be sketched here, but a main idea is that most subsets S ⊂ n∗ are also subsets
of (n− 1)∗.

Corollary 4.12. For the full r-shift with cnS = 2−n for all S,

Asc(Σr,U0, σ) =
log r

2
and Int(Σr,U0, σ) = 0.

In the following table we compare htop, Int, and Asc for the full 2-shift, the golden mean SFT, and
the subshift consisting of a single periodic orbit of period two. The first is totally disordered, while the
third is completely deterministic, so each of these has intricacy zero, while the golden mean SFT has
some balance between freedom and discipline.
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Adjacency Graph Entropy Asc Int

Disordered 0.693 0.347 0

0.481 0.286 0.090

Ordered 0 0 0

As with the definitions of topological and measure-theoretic entropies, one may seek to define an
isomorphism invariant by taking the supremum over all open covers (or partitions). But this will lead
to nothing new.

Theorem 4.13. Let (X,T ) be a topological dynamical system and fix the system of coefficients to be
cnS = 2−n. Then

sup
U

Asc(X,U , T ) = htop(X,T ).

Proof. The proof depends on the structure of average subsets of n∗ = {0, 1, . . . , n − 1}: most S ⊂ n∗

have size about n/2, so are not too sparse.

When computing the ordinary topological entropy of a subshift, to get at the supremum over open
covers it is enough to start with the time-0 partition (or open cover) α, then iterate and refine, replacing

α by αk∗ = αk−10 . Then for fixed k, when we count numbers of blocks (configurations) , we are looking
at α(n+k)∗ instead of αn∗ ; and when k is fixed, as n grows the result is the same.

When computing Asc and Int, start with the time-0 partition, and code by k-blocks. Then S ⊂ n∗ is
replaced by S + k∗, and the effect on αS+k∗ as compared to αS is similar, since it acts similarly on each
of the long subintervals comprising S.

k/2

s1
s2

Here is a still sketchy but slightly more detailed indication of the idea. Fix a k for coding by k-blocks
(or looking at N((Uk)S) or H((αk)S)). Cut n∗ into consecutive blocks of length k/2. When s ∈ S is
in one of these intervals of length k/2, then s + k∗ covers the next interval of length k/2. So if S hits
many of the intervals of length k/2, then S + k∗ starts to look like a union of long intervals, say each
with |Ej | > k. By shaving a little off each of these relatively long intervals, we can assume that also the
gaps have length at least k.

Given ε > 0, we may assume that k is large enough that for every interval I ⊂ N with |I| ≥ k/2,

(4.1) 0 ≤ logN(I)

card(I)
− htop(X,σ) < ε.

We let B denote the set of S ⊂ n∗ which miss at least 2nε/k of the intervals of length k/2 and show
that

lim
n→∞

card(B)

2n
= 0.
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If S /∈ B, then S hits many of the intervals of length k/2, and hence S + k∗ is the union of intervals of
length at least k, and we can arrange that the gaps are also long enough to satisfy the estimate in 4.1
comparing (average of log of) number of blocks to htop(X,σ). �

Exercise 4.3. Prove that supU Int(X,U , T ) = htop(X,T ) (for the system of coefficients cnS = 2−n).

4.3. Ergodic-theoretic intricacy and average sample complexity. We turn now to the formu-
lation and study of the measure-theoretic versions of intricacy and average sample complexity. For a
partition α of X and a subset S ⊂ n∗ define

αS =
∨
i∈S

T−iα.

Definition 4.14 (P-W). Let (X,B, µ, T ) be a measure-preserving system, α = {A1, . . . , An} a finite
measurable partition of X, and cnS a system of coefficients. The measure-theoretic intricacy of T with
respect to the partition α is

Intµ(X,α, T ) = lim
n→∞

1

n

∑
S⊂n∗

cnS [Hµ(αS) +Hµ(αSc)−Hµ(αn∗)] .

The measure-theoretic average sample complexity of T with respect to the partition α is

Ascµ(X,α, T ) = lim
n→∞

1

n

∑
S⊂n∗

cnSHµ(αS).

Theorem 4.15. The limits in the definitions of measure-theoretic intricacy and measure-theoretic av-
erage sample complexity exist.

Theorem 4.16. Let (X,B, µ, T ) be a measure-preserving system and fix the system of coefficients
cnS = 2−n. Then

sup
α

Ascµ(X,α, T ) = sup
α

Intµ(X,α, T ) = hµ(X,T ).

The proofs are similar to those for the corresponding theorems in topological setting. These observa-
tions indicate that there may be a topological analogue of the following result.

Theorem 4.17 (Ornstein-Weiss, 2007). If J is a finitely observable functional defined for ergodic finite-
valued processes that is an isomorphism invariant, then J is a continuous function of the measure-
theoretic entropy.

Here the processes considered are finite-state ergodic stochastic processes X = (x1, x2, . . . ), and a
“finitely observable functional” is the a.s. limit F (X) of a sequence of functions fn(x1, x2, . . . , xn)
taking values in some metric space which for every such process converges almost surely. The integral
of x1 and the entropy of the process are examples of finitely observable functionals.

4.4. The average sample complexity function. The observations in the preceding situation suggest
that one should examine these Asc and Int locally. For example, for a fixed open cover U , fix a k and
find the topological average sample complexity Asc(X,Uk, σ) = limn→∞

1
n

∑
S⊂n∗ cnS logN((Uk)S). Or,

do not take the limit on n, and study the quantity as a function of n, analogously to the symbolic or
topological complexity functions. Similarly for the measure-theoretic version: fix a partition α and study
the limit, or the function of n.

Ascµ(X,T, α) = lim
n→∞

1

n

∑
S⊂n∗

cnSHµ(αS).

So we begin study of the Asc of a fixed open cover as a function of n,

Asc(X,σ,Uk, n) =
1

n

∑
S⊂n∗

cnS logN(S),

especially for SFT’s and U = U0, the natural time-0 cover (and partition).
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Figure 1. Graphs of two subshifts with the same complexity function but different
average sample complexity functions.
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Figure 4.18 shows two SFT’s that have the same number of n-blocks for every n but different Asc
functions.

Example 4.18.

Asc(n) =
1

n

1

2n

∑
S⊂n∗

logN(S)

Numerical evidence (up to n = 10) indicates that these two SFT’s have different values of Asc and Int,
although they have identical complxity functions and hence the same topological entropy..
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Adjacency Graph htop Asc(10) Int(10)

0.481 0.399 0.254

0.481 0.377 0.208

4.5. Computing measure-theoretic average sample complexity. For a fixed partition α, we de-
velop a relationship between Ascµ(X,α, T ) and a series summed over i involving the conditional entropies
Hµ(α | α∞i ). The series can serve as a computational tool analogous to the series in Theorem 4.11.

The idea is to view a subset S ⊂ n∗ as corresponding to a random binary string of length n generated
by the Bernoulli measure B(1/2, 1/2) on the full 2-shift. For example {0, 2, 3} ⊂ 5∗ ↔ 10110. The
average entropy, Hµ(αS), over all S ⊂ n∗, is then an integral and can be interpreted in terms of the
entropy of a first-return map to the cylinder A = [1] in a cross product of our system X and the full
2-shift, Σ2.

Theorem 4.19. Let (X,B, µ, T ) be a measure-preserving system and α a finite measurable partition of
X. Let A = [1] = {ξ ∈ Σ+

2 : ξ0 = 1} and β = α × A the related finite partition of X × A. Denote by
TX×A the first-return map on X × A and let PA = P/P [1] denote the measure P restricted to A and
normalized. Let cnS = 2−n for all S ⊂ n∗. Then

Ascµ(X,α, T ) =
1

2
hµ×PA

(X ×A, β, TX×A).

Applying the definition of the entropy of a transformation with respect to a fixed partition as the
integral of the corresponding information function and breaking up the integral into a sum of integrals
over sets where the first-return time to X ×A takes a fixed value produces the following result.

Theorem 4.20. Let (X,B, µ, T ) be a measure-preserving system and α a finite measurable partition of
X. Let cnS = 2−n for all S ⊂ n∗. Then

Ascµ(X,α, T ) ≥ 1

2

∞∑
i=1

1

2i
Hµ (α | α∞i ) .

Equality holds in certain cases (in particular, for Markov shifts)

4.6. The search for maximizing measures on subshifts. Given a topological dynamical system
(X,T ), one would like to find the measures that maximize Asc and Int, since the nature of these
measures might tell us a lot about the balance between freedom and determinism within the system.
For ordinary topological entropy and topological pressure with respect to a given potential, maximizing
measures (measures of maximal entropy, equilibrium states) are of great importance and are regarded
as natural measures on the system. we hope that Theorem 4.20 might be helpful in the identification
of these extremal measures. In the topological case the first-return map TX×A is not continuous nor
expansive nor even defined on all of X × A in general, so known results about measures of maximal
entropy and equilibrium states do not apply. To maximize Int, there is the added problem of the minus
sign in

Int(X,U , T ) = 2 Asc(X,U , T )− htop(X,U , T ).
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Maybe some modern work on local or relative variational principles, almost subadditive potentials,
equilibrium states for shifts with infinite alphabets, etc. could apply? (See [9,10,19,22,28,35,36,38,51,71]
etc.)

But the above theorem does give up some information immediately:

Proposition 4.21. When T : X → X is an expansive homeomorphism on a compact metric space (e.g.,
(X,T ) is a subshift on finite alphabet), Ascµ(X,T, α) is an affine upper semicontinuous (in the weak*
topology) function of µ, so the set of maximal measures for Ascµ(X,T, α) is nonempty, compact, and
convex and contains some ergodic measures (see [69, p. 198 ff.]).

We try now to find measures of maximal Asc or Int on SFT’s, or at least maximal measures among
all Markov measures of a fixed memory. Recall that a measure of maximal entropy on an SFT is unique
and is a Markov measure, called the Shannon-:Parry measure, denoted here by µmax. Given a potential
function φ that is a function of just two coordinates, again there is a unique measure that maximizes

Pµ(φ) = hµ(σ) +

∫
X

φdµ.

See [52].

A 1-step Markov measure on the full shift space (Σn, σ) is given by s stochastic matrix P = (Pij) and
fixed probability vector p =

(
p0 p1 . . . pn−1

)
, i.e.

∑
pi = 1 and pP = p. The measure µP,p is

defined as usual on cylinder sets by

µp,P [i0i1 . . . ik] = pi0Pi0i1 · · ·Pik−1ik .

Example 4.22 (1-step Markov measure on the golden mean shift). Denote by P00 ∈ [0, 1] the probability
of going from 0 to 0 in a sequence of X{11} ⊂ Σ2. Then

P =

(
P00 1− P00

1 0

)
, p =

(
1

2−P00

1−P00

2−P00

)
Using the series formula in Theorem 4.20 and known equations for conditional entropy, we can ap-

proximate Ascµ and Intµ for Markov measures on SFTs. Let’s look first at 1-step Markov measures.

ææ
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Calculations for one-step Markov measure

on the golden mean shift

hΜ

AscΜ

IntΜ

P00 hµ Ascµ Intµ

0.618 0.481 0.266 0.051
0.533 0.471 0.271 0.071
0.216 0.292 0.208 0.124
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Note that the maximum value of hµ = htop = log φ occurs when P00 = 1/φ; there are unique maxima
among 1-step Markov measures for Ascµ and Intµ; and the maxima for Ascµ, Intµ, and hµ are achieved
by different measures.

Now let’s calculate Asc and Int for various 2-step Markov measures on the golden mean SFT.

2-step Markov measures on the golden mean shift

Average sample complexity for two-step Markov measure

on the golden mean shift

0.0
0.5

1.0 P000

0.0

0.5

1.0
P100

0.0

0.1

0.2

AscΜ

Intricacy for two-step Markov measure

on the golden mean shift

0.0
0.5

1.0
P000

0.0

0.5

1.0

P100

0.00

0.05

0.10

0.15

IntΜ

P000 P100 hµ Ascµ Intµ

0.618 0.618 0.481 0.266 0.051
0.483 0.569 0.466 0.272 0.078
0 0.275 0.344 0.221 0.167

Ascµ appears to be strictly convex, so it would have a unique maximum among 2-step Markov measures.
Intµ appears to have a unique maximum among 2-step Markov measures on a proper subshift (P000 = 0).
The maxima for Ascµ, Intµ, and hµ are achieved by different measures, and are different from the
measures that are maximal among 1-step Markov measures.

Let’s move from the golden mean SFT to the full 2-shift.

1-step Markov measures on the full 2-shift

Average sample complexity for one-step Markov measure

on the full 2-shift

0.0
0.5

1.0 P00

0.0
0.5

1.0 P11

0.0

0.1

0.2

0.3

AscΜ

Intricacy for one-step Markov measure

on the full 2-shift

0.0
0.5

1.0
P00

0.0
0.5

1.0 P11

0.00

0.05

0.10

IntΜ

P00 P11 hµ Ascµ Intµ

0.5 0.5 0.693 0.347 0
0.216 0 0.292 0.208 0.124
0 0.216 0.292 0.208 0.124
0.905 0.905 0.315 0.209 0.104

Ascµ appears to be strictly convex, so it would have a unique maximum among 1-step Markov measures.
Intµ appears to have two maxima among 1-step Markov measures on proper subshifts (P00 = 0 and
P11 = 0). There seems to be a 1-step Markov measure that is fully supported and is a local maximum for
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Calculations for one-step Markov measure

on the golden mean shift

hΜ

AscΜ

IntΜ

P00 hµ Ascµ Intµ

0.618 0.481 0.266 0.051
0.533 0.471 0.271 0.071
0.216 0.292 0.208 0.124

Table 1. Calculations for one-step Markov measures on the golden mean shift. Num-
bers in bold are maxima for the given categories.

P000 P100 hµ Ascµ Intµ

0.618 0.618 0.481 0.266 0.051
0.483 0.569 0.466 0.272 0.078
0 0.275 0.344 0.221 0.167

Table 2. Calculations for two-step Markov measures on the golden mean shift.

Intµ among all 1-step Markov measures. The maxima for Ascµ, Intµ, and hµ are achieved by different
measures.

We summarize some of the questions generated above.

Conjecture 4.23. On the golden mean SFT, for each r there is a unique r-step Markov measure µr
that maximizes Ascµ(X,σ, α) among all r-step Markov measures.

Conjecture 4.24. µ2 6= µ1

Conjecture 4.25. On the golden mean SFT there is a unique measure that maximizes Ascµ(X,T, α).
It is not Markov of any order (and of course is not the same as µmax).

Conjecture 4.26. On the golden mean SFT for each r there is a unique r-step Markov measure that
maximizes Intµ(X,T, α) among all r-step Markov measures.

Conjecture 4.27. On the 2-shift there are two 1-step Markov measures that maximize Intµ(X,T, α)
among all 1-step Markov measures. They are supported on the golden mean SFT and its image under
the dualizing map 0↔ 1.

Conjecture 4.28. On the 2-shift there is a 1-step Markov measure that is fully supported and is a local
maximum point for Intµ(X,T, α) among all 1-step Markov measures.
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Figure 2. Combination of the plots of hµ, Ascµ, and Intµ for two-step Markov measures
on the golden mean shift.
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The conjectures extend to arbitrary shifts of finite type and other dynamical systems. Many other
natural questions suggested by the definitions and properties established so far of intricacy and average
sample complexity can be found in the dissertation of Ben Wilson [70]:

1. We do not know whether a variational principle supµ Ascµ(X,T, α) = Asctop(X,α, T ) holds.
2. Analogous definitions, results, and conjectures exist when entropy is generalized to pressure, by in-

cluding a potential function which measures the energy or cost associated with each configuration.
First one can consider a function of just a single coordinate that gives the value of each symbol. Max-
imum intricacy may be useful for finding areas of high information activity, such as working regions
in a brain (Edelman-Sporns-Tononi) or coding regions in genetic material (Koslicki-Thompson).

3. Higher-dimensional versions, where subsets S of coordinates are replaced by patterns, are naturally
defined and waiting to be studied.

4. One can define and then study average sample complexity of individual finite blocks.
5. We need formulas for Asc and Int for more subshifts and systems.
6. Find the subsets or patterns S that maximize logN(US) or log[N(US)N(USc)]/N(Un∗), and similarly

for the measure-preserving case.
7. In the topological case, what are the natures of the quantities that arise if one changes the definitions

of Alt and Int by omitting the logarithms?
8. Consider not just subsets S and their complements, but partitions of n∗ into a finite number of

subsets. For the measure-preserving case, there is a natural definition of the mutual information
among a finite family of random variables on which one could base the definition of intricacy.

We welcome help in resolving such questions and exploring further the ideas of intricacy, average sample
complexity, and complexity in general!
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