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Abstract

We focus on a class of substitutions, namely the Pisot substitutions.
They are defined as follows: Pisot substitutions are primitive substitu-
tions such that the dominant Perron–Frobenius eigenvalue of their inci-
dence matrix is assumed to be a Pisot number, that is, an integer whose
conjugates lie strictly inside the unit disk. We discuss their arithmetic
and spectral properties. We then extend the corresponding notions to the
S-adic framework: one does not consider only the iteration of a single
substitution, but infinite compositions of substitutions.
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1 Introduction

One fundamental question concerning symbolic dynamical systems, and in par-
ticular, substitutive dynamical systems, deals with the possibility of giving to
them a geometric representation. By geometric representation, one considers
here dynamical systems of a geometric nature that are measure-theoretically
isomorphic to the initial symbolic dynamical system. In particular, one looks
for conditions under which it is possible to give a geometric representation of
a substitutive dynamical system as a translation on a torus, or on a compact
metric group. This latter question can be reformulated in spectral terms: which
are the substitutions whose associated dynamical system has discrete spectrum?
For more details, see e.g. [51, 49]. Pisot irreducible substitutions, that is, sub-
stitutions for which the characteristic polynomial of their incidence matrix is as-
sumed to be the minimal polynomial of a Pisot number, that is, an integer whose
conjugates lie strictly inside the unit disk, are assumed to have pure discrete
spectrum. This is called the Pisot substitutive conjecture. Pisot substitutive
dynamical systems are thus expected to be measure-theoretically isomorphic to
a translation on a compact metric group. Note that the conjecture is proved
in [12] in the setting of beta-numeration. We focus here on the class of Pisot
irreducible substitutions by assuming furthermore that their incidence matri-
ces are unimodular (they have determinant ∓1). The translations involved are
thus toral translations. We first discuss their arithmetic and spectral proper-
ties within the Pisot conjecture framework. We then extend the corresponding
notions to the so-called S-adic framework.

More precisely, we recall basic notions on substitutions and symbolic dynam-
ical systems in Section 2. Section 3 is devoted to Pisot substitutions. The notion
of discrete spectrum is recalled in Section 4, and Rauzy fractals are discussed in
Section 5. Section 6 recalls basic definitions concerning S-adic systems. Section
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7 introduces the S-adic counterpart of the notion of Pisot substitution. Lastly
Section 8 handles the cases of Arnoux-Rauzy and Brun S-adic systems.

The material of this lecture comes mostly from [51, Chap. 1], [15] and [19].
I warmly thank the coauthors of these papers for using the present material.
These publications are available at http://www.liafa.univ-paris-diderot.
fr/~berthe/ and at http://www.liafa.univ-paris-diderot.fr/~berthe/

Fogg.html.

2 Substitutions and symbolic dynamical systems

Substitutions. We consider a finite set of letters A, called alphabet. A (finite)
word is an element of the free monoid A∗ generated by A. A substitution σ over
the alphabet A is a non-erasing endomorphism of the free monoid A∗ (non-
erasing means that the image of any letter is not equal to the empty word but
contains at least one letter).

For i ∈ A and for w ∈ A∗, let |w|i stand for the number of occurrences of
the letter i in the word w. Let d stand for the cardinality of A. Let σ be a
substitution. Its incidence matrix Mσ = (mi,j)1≤i,j≤d is defined as the square

matrix with entries mi,j = |σ(j)|i for all i, j. A substitution is said primitive if
there exists a power of its incidence matrix whose entries are all positive. We
say that σ is unimodular if det(Mσ) = ±1.

The set AN shall be equipped with the product topology of the discrete
topology on each copy of A. Thus, this set is a compact space. This topology
is the topology defined by the following distance:

for u 6= v ∈ AN, d(u, v) = 2−min{n∈N; un 6=vn}.

Thus, two infinite words are close to each other if their first terms coincide.
Note that the space AN is complete as a compact metric space. Furthermore,
it is a Cantor set, that is, a totally disconnected compact set without isolated
points.

A fixed point of a substitution σ is an infinite word u = (un)n with σ(u) = u.
A periodic point of σ is an infinite word u with σk(u) = u for some k > 0.

Substitutions are very efficient tools for producing infinite words. Let σ be
a substitution over the alphabet A, and a be a letter such that σ(a) begins with
a and |σ(a)| ≥ 2. Then there exists a unique fixed point u of σ beginning with
a. This infinite word is obtained as the limit in A? ∪AN (when n tends toward
infinity) of the sequence of words (σn(a))n, which is easily seen to converge
(the topology on AN is extended to A? ∪ AN by adding an extra symbol to the
alphabet A).

Example 1 (Fibonacci substitution). We consider the substitution σ on A =
{a, b} defined by σ(a) = ab and σ(b) = a. Its incidence matrix is(

1 1
1 0

)
.
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Then, the sequence of finite words (σn(a))n starts with

σ0(a) = a, σ1(a) = ab, σ2(a) = aba, σ3(a) = abaababa, . . .

Each σn(a) is a prefix of σn+1(a), and the limit word in AN is

abaababaabaababaababaabaababaabaababaababaabaababaababaabaab . . .

The above limit word is called the Fibonacci word (for more on the Fibonacci
word, see e.g. [48, 51, 55]).

Primitivity. An infinite word u = (un)n is uniformly recurrent if every
word occurring in u occurs in an infinite number of positions with bounded
gaps, that is, if for every factor w, there exists s such that for every n, w is a
factor of un . . . un+s−1. The set of factors Lu of an infinite word u is called its
language.

We recall that if σ is primitive, any of its periodic points is uniformly re-
current. Indeed, let u = σp(u) (p ≥ 1) be a periodic point of σ. We have
u = (σp)k(u) = (σp)k(u0)(σp)k(u1)...; for any b ∈ A, a occurs in (σp)k(b), hence
a occurs in u infinitely often with bounded gaps; but then so does every (σp)n(a)
in u = (σp)n(u), hence so does any word occurring in u.

According to Perron–Frobenius’ theorem, if a substitution is primitive, then
its incidence matrix admits a dominant eigenvalue (it dominates strictly in mod-
ulus the other eigenvalues) that is (strictly) positive. It is called its Perron–
Frobenius eigenvalue, or else its expansion factor.

Symbolic dynamical system. Let S stand for the (one-sided) shift acting
on AN:

S((un)n∈N) = (un+1)n∈N.

One can associate with any infinite word in AN a symbolic dynamical system,
defined as a closed shift invariant subset of AN. Indeed, let u ∈ AN. Let O(u)
be the positive orbit closure of the infinite word u under the action of the shift
S, i.e., the closure in AN of the set O(u) = {Sn(u) | n ≥ 0}. The substitutive
symbolic dynamical system (Xu, S) (also called shift) generated by u is defined
as Xu := O(u). Its set of factors is called its language.

We can also associate such a symbolic system with a primitive substitution.
Let σ be a primitive substitution over A. Let u ∈ AN be such that σk(u) = u
for some k ≥ 1. Such an infinite word exists by primitivity of σ. Indeed, there
exist a letter a and a positive integer k such that σk(a) begins with a; consider
as first letter of u this letter a; take u = limn→∞ σkn(a). Let again O(u) be
the positive orbit closure of the infinite word u under the action of the shift S,
i.e., the closure of the set O(u) = {Sn(u) | n ≥ 0}. The substitutive symbolic
dynamical system (Xσ, S) generated by σ is defined as Xσ := O(u). One easily
checks by primitivity that (Xσ, S) does not depend on the choice of the infinite
word u fixed by some power of σ. For more details, see e.g. [49].

The dynamical system (Xσ, S) associated with a primitive substitution σ
can be endowed with a Borel probability measure µ invariant under the action
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of the shift S, that is, µ(S−1B) = µ(B), for every Borel set B. Indeed, this
measure is uniquely defined by its values on the cylinders. The frequency of a
letter i in an infinite word u is defined as the limit when n tends towards infinity,
if it exists, of the number of occurrences of i in u0u1 · · ·un−1 divided by n. For a
given (finite) word w of the language of Xσ, the cylinder [w] is the set of infinite
words in Xσ that have w as a prefix. The measure of the cylinder [w] is thus
defined as the frequency of the finite word w in any element of Xσ, which does
exist (σ is assumed to be primitive). For more details, see the lecture [34] or
see the book [49]. Let us recall also that the system (Xσ, S) is uniquely ergodic
if σ is assumed to be primitive: there exists a unique shift-invariant measure.

More generally, let us now recall the main properties of the symbolic systems
(Xσ, S) associated with primitive substitutions. For more details, see [34] or
[49]. The (factor) complexity function of an infinite word u counts the number
of distinct factors of a given length. An infinite word u is said to be linearly
recurrent if there exists a constant C such that R(n) ≤ Cn, for all n.

Theorem 1. Let σ be a primitive substitution. Then, (Xσ, S) is minimal,
linearly recurrent, uniquely ergodic. Any of its elements has at most linear
factor complexity.

Note that all there results hold also for biinfinite words in AZ. In this case,
the shift S is invertible.

For analogue notions of substitutions and associated dynamical systems de-
fined on tilings and point sets, and acting as inflation/subdivision rules, see the
surveys [61, 56, 50].

3 First properties of Pisot substitutions

We now concentrate on Pisot substitutions.

3.1 Pisot substitutions

Let us recall that an algebraic integer α > 1 is a Pisot-Vijayaraghavan number
or a Pisot number if all its algebraic conjugates λ other than α itself satisfy
|λ| < 1. This class of numbers has been intensively studied and has some
special Diophantine properties (see for instance [30]).

Example 2. The largest roots of X2 −X − 1, X3 −X2 −X − 1, X3 −X − 1
or else X3 −X2 − 1 are Pisot numbers.

A primitive substitution is said to be Pisot if its expansion number (i.e., its
Perron–Frobenius eingenvalue) is a Pisot number.

A primitive substitution is said Pisot irreducible if the characteristic poly-
nomial of its incidence matrix is the minimal polynomial of a Pisot number.

Example 3. The Fibonacci substitution is a Pisot irreductible substitution.
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3.2 Balancedness properties

Frequencies and invariant measures. Let u be an infinite word. Recall
that the frequency of a letter i in u is defined as the limit when n tends towards
infinity, if it exists, of the number of occurrences of i in u0u1 · · ·un−1 divided
by n. The vector f whose components are given by the frequencies of the
letters is called the letter frequency vector. The infinite word u has uniform
letter frequencies if, for every letter i of u, the number of occurrences of i in
uk · · ·uk+n−1 divided by n has a limit when n tends to infinity, uniformly in k.

Similarly, we can define the frequency and the uniform frequency of a fac-
tor, and we say that u has uniform frequencies if all its factors have uniform
frequency.

Note that having frequencies is a property of an infinite word u while having
uniform frequencies is a property of the associated language Lu or of the shift
Xu. Recall that a probability measure µ on Xu is said invariant if µ(S−1A) =
µ(A) for every measurable set A ⊂ Xu. An invariant probability measure on
Xu is ergodic if any shift-invariant measurable set has either measure 0 or 1. If
µ is an ergodic measure on u, then we know from the Birkhoff ergodic Theorem
that µ-almost every infinite word in Xu has frequency µ([w]), for any cylinder1

[w], but this frequency is not necessarily uniform. If the shift Xu is uniquely
ergodic (i.e., there exists a unique shift-invariant probability measure on Xu),
then the unique invariant measure on X is ergodic and the convergence in the
Birkhoff ergodic Theorem holds uniformly for every infinite word in Xu. The
property of having uniform factor frequencies for a shift is actually equivalent
to unique ergodicity. In that case, one recovers the frequency of a factor w of
length n as µ([w]). For more details on invariant measures and ergodicity, we
refer to [49] and [16, Chap. 7].

Discrepancy and balancedness. Let u ∈ AN be an infinite word and
assume that each letter i has frequency fi in u. The discrepancy of u is

∆(u) = lim sup
i∈A, n∈N

||u0u1 . . . un−1|i − nfi|.

The quantity ∆(u) is considered e.g. in [1, 2]. We also consider

∆n(u) = sup
i∈A
||u0u1 . . . un−1|i − nfi|.

An infinite word u ∈ AN is said to be C-balanced if for any pair v, w of factors
of the same length of u, and for any letter i ∈ A, one has ||v|i − |w|i| ≤ C. It is
said balanced if there exists C > 0 such that it is C-balanced.

Proposition 1. An infinite word u ∈ AN is balanced if and only if it has
uniform letter frequencies and there exists a constant B such that for any factor
w of u, we have ||w|i− fi|w|| ≤ B for all letter i in A, where fi is the frequency
of i. Moreover, if u has letter frequencies, then u is balanced if and only if its
discrepancy ∆(u) is finite.

1Recall that [w] = {v ∈ Xu; v0 . . . vn−1 = w}.
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Proof. We follow the proof given in [15]. Let u be an infinite word with letter
frequency vector f and such that ||w|i−fi|w|| ≤ B for every factor w and every
letter i in A. Then, for every pair of factors w1 and w2 with the same length n,
we have by triangular inequality

||w1|i − |w2|i| ≤ ||w1|i − nfi|+ ||w2|i − nfi| ≤ 2B.

Hence L is 2B-balanced (see also [1, Proposition 7]).
Conversely, assume that u is C-balanced for some C > 0. We fix a letter

i ∈ A. For every non-negative integer p, let Np be defined as an integer N such
that for every word of length p of u, the number of occurrences of the letter i
belongs to the set {N,N + 1, · · · , N + C}.

We first observe that the sequence (Np/p)p∈N is a Cauchy sequence. Indeed
consider a factor w of length pq, where p, q ∈ N. The number |w|i of occurrences
of i in w satisfies

pNq ≤ |w|i ≤ pNq + pC, qNp ≤ |w|i ≤ qNp + qC.

We deduce that −qC ≤ qNp − pNq ≤ pC and thus −C ≤ Np − pNq/q ≤ pC/q.
Let fi stand for limq Nq/q. By letting q tend to infinity, one then deduces

that −C ≤ Np − pfi ≤ 0. Thus, for any factor w of u we have∣∣∣∣ |w|i|w| − fi
∣∣∣∣ ≤ C

|w|
,

which was to be proved.
If u has letter frequencies, the equivalence between balancedness and finite

discrepancy comes from triangular inequality.

Sturmian words (see Section 6.2) are known to be 1-balanced [48]; they even
are exactly the 1-balanced infinite words that are not eventually periodic. There
exist Arnoux-Rauzy words (see Section 6.3) that are not balanced such as first
proved in [28], contradicting the belief that they would be natural codings of
toral translations. For more on this subject, see also [18, 29].

We follow the conventions of [1]. Let σ be a primitive substitution and λ
be its Perron-Frobenius eigenvalue. Let d′ stand for the number of distinct
eigenvalues of Mσ. Let λi, for i = 1, · · · , d′, stand for the eigenvalues of σ, with
λ1 = λ, and let αi + 1 stand for their multiplicities in the minimal polynomial
of the incidence matrix Mσ. We order them as follows. Let i, k such that
2 ≤ i < k ≤ d′. If |λi| 6= |λk|, then |λi| > |λk|. If |λi| = |λk|, then αi ≥ αk. We
also add that if |λi| = |λk| = 1, and αi = αk, if λi is not a root of unity and λk
is a root of unity, then i < k. Note that several orders satisfy these conditions
but this will cause no problem since the results described in this section do not
depend on the choice of such an order (see [1, Remark 1]).

Theorem 2. Primitive Pisot substitutions are balanced, and have finite dis-
crepancy.
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Proof. The proof follows the proof of [2, Proposition 11] and uses the Dumont-
Thomas prefix-suffix numeration [32].

Let σ be a primitive Pisot substitution over the alphabet A. Let us prove
that σ has finite discrepancy. Let (fi)i stand for its letter frequency vector. We
consider the abelianization map l defined as the map

l : A∗ → Nd, w 7→ (|w|1, |w|2, · · · , |w|d).

Note that
l(σ(w)) = Mσl(w),

for any word w.
We first consider a fixed word w of the form w = σn(j), for j letter in A.

If i is a fixed letter in A, the sequence (|σn(j)|i)n satisfies a linear recurrence
whose coefficients are provided by the minimal polynomial of Mσ. Hence, there
exists Ci,j such that

|σn(j)|i = Ci,jfiλ
n +O(nα2 |λ2|n).

By applying the Perron–Frobenius Theorem, one checks that there exists Cj
such that Ci,j = Cjfi for all i, hence

|σn(j)|i = Cjfiλ
n +O(nα2 |λ2|n).

We then deduce from
∑
i fi = 1 that

|σn(j)|i − fi|σn(j)| = O(nα2 |λ2|n).

It remains to check that this result also holds for prefixes of the fixed point
u. Indeed, it is easy to prove that any prefix w of u can be expanded as:

w = σk(wk)σk−1(wk−1) . . . w0,

where the wi belong to a finite set of words. (This corresponds to a “numera-
tion system” on words; there are some admissibility conditions on the possible
sequences (wi), which can be worked out explicitly: they are given by a finite
automaton.) This numeration is called Dumont-Thomas numeration.

In fact, more can be said concerning balance properties of primitive substi-
tutions. We follow the convention introduced previously on the spectrum of the
incidence matrix Mσ.

Theorem 3 ([1, 2]). Let σ be a primitive substitution. Let u be a fixed point of
σ.

• If |λ2| < 1, then the discrepancy ∆(u) is finite..

• If |λ2| > 1, then ∆n(u) = (O ∩ Ω)((log n)α2n(logλ |λ2])).
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• If |λ2| = 1, and λ2 is not a root of unity, then

∆n(u) = (O ∩ Ω)((log n)α2+1).

If λ2 is a root of unity, then either

∆n(u) = (O ∩ Ω)((log n)α2+1), or ∆n(u) = (O ∩ Ω)((log n)α2).

In particular there exist balanced fixed points of substitutions for which
|θ2| = 1. All eigenvalues of modulus one of the incidence matrix have to be
roots of unity.

Observe that the Thue-Morse word is 2-balanced, but if one considers gen-
eralized balances with respect to factors of length 2 instead of letters, then it is
not balanced anymore.

3.3 Birkhoff sums

Let u = (un)n ∈ AN be an infinite word and φ : AN → R be a continuous
function. The Birkhoff sum of φ along u is the sequence

Sn(φ, u) = φ(u) + φ(Su) + . . .+ φ(Sn−1u).

It generalizes the concept of frequency: indeed, if φ = 1[i] is the characteristic
function of the letter i, then Sn(φ, u) is the number of occurrences of i in the
prefix of length n of u. More generally, if (Xu, S) is the symbolic dynamical
system generated by u, and φ : AN → R is a continuous function, we may define

Sn(φ, S, v) = φ(v) + φ(Sv) + . . .+ φ(Sn−1v),

for all v ∈ Xu. In the context of symbolic dynamics, this corresponds to take
the sum of the values of φ along the orbit of v under the action of the shift S.

Assume that (Xu, S) has uniform word frequencies and let f denote the letter
frequencies vector. Then, uniformly in v ∈ Xu, we have, by unique ergodicity,

lim
n→∞

Sn(φ, S, v)

n
=
∑
i∈A

φ(i)fi.

Now, u is balanced if and only if there exists a constant C so that∣∣∣∣∣Sn(φ, T, x)

n
−
∑
i∈A

φ(i)fi

∣∣∣∣∣ ≤ C‖φ‖
n

, for all n ≥ 0.

In other words, balancedness may be interpreted as an optimal speed of conver-
gence of Birkhoff sums.

4 Group translations and discrete spectrum

We recall in this section elements concerning the notion of pure discrete spec-
trum for symbolic dynamical systems.
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4.1 Spectrum

We first recall some basic definitions concerning the spectrum of a dynamical
system. Good references on the subject are [31, 64].

Note that we consider here invertible measure-theoretic dynamical systems
(X,T, µ), with T is invertible, and T−1 being also measurable and measure-
preserving. If one works with infinite words (and not with biinfinite words),
the shift S is a priori not invertible. Nevertheless, all the previous setting
(introduced in Section 2) extends in a straightforward way to biinfinite words
in AZ.

Let (X,T, µ) be an invertible measure-theoretic dynamical system. One can
associate with it in a natural way an operator U acting on the Hilbert space
L2(X,µ) defined as the following map:

U : L2(X,µ) → L2(X,µ)
f 7→ f ◦ T.

This operator is called the Koopman operator. Since T preserves the measure,
the operator U is easily seen to be a unitary operator. Note that the surjectivity
of the operator U comes from the invertibility of the map T .

The eigenvalues of (X,T, µ) are defined as being those of the map U . The
set of eigenvalues of the operator U is called spectrum. It is a subgroup of the
unit circle. The eigenfunctions of (X,T, µ) are defined to be the eigenvectors of
U . Let us note that the map U always has 1 as an eigenvalue and any non-zero
constant function is a corresponding eigenfunction.

One can deduce ergodic information from the spectral study of the opera-
tor U . In particular, T is ergodic if and only if the eigenvalue one is a simple
eigenvalue, that is, if all eigenfunctions associated with 1 are constant almost
everywhere. Indeed, if a Borel set E of non-trivial measure satisfies T−1E = E,
then the characteristic function 1E is a non-constant eigenfunction associated
with one. Recall that if the system (X,T, µ) is ergodic, then every Borel func-
tion which is T -invariant is almost everywhere constant. Otherwise, if f is not
constant almost everywhere, then one can cut its image into two disjoint sets,
whose inverse images have a non-trivial measure and are invariant sets.

Furthermore, if T is ergodic, every eigenfunction is simple and every eigen-
function is of constant modulus. Indeed, if f is an eigenfunction for the eigen-
value β, |f | is an eigenfunction for the eigenvalue |β| = 1 and hence is a constant.
If f1 and f2 are eigenfunctions for β, |f2| is a non-zero constant, and f1/f2 is
an eigenfunction for 1 and hence a constant.

The spectrum is said to be discrete (or to have pure point spectrum) if
L2(X,µ) admits an Hilbert basis of eigenfunctions, that is, if the eigenfunctions
span L2(X,µ). Hence, if L2(X,µ) is separable (this is the case for instance
if X is a compact metric set), then there are at most a countable number of
eigenvalues.

If the spectrum contains only the eigenvalue 1, with multiplicity 1, the system
is said to be weakly mixing or to have a continuous spectrum. This implies in
particular that T is ergodic.
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4.2 Group translations

The simplest examples of dynamical systems are toral translations, and more
generally, translations over a compact group G, the invariant probability mea-
sure being the Haar measure. These are also called rotations of the group G.
We focus here (in the context of unimodular substitutions) on toral translations,
that is, on translations Rα by the vector α = (α1, . . . , αd) on the d-dimensional
torus Td = Rd/Zd:

Rα(x1, · · · , xd) = (x1 + α1, · · · , xd + αd) modulo 1.

More generally, the class of translations over compact groups contains in par-
ticular all the toral translations, the additions over a finite group, translations
over p-adic integer groups, or else, translations over p-adic solenoids.

One has the following equivalence (for a proof, see for instance [64]).

Theorem 4. Let G be a compact metric group, and let T : G→ G, x 7→ ax be
a translation of G. The following properties are equivalent:

• T is minimal;

• T is ergodic;

• T is uniquely ergodic;

• {an; n ∈ N} is dense in G.

We thus deduce by using the density of {an; n ∈ N} that the ergodicity of T
implies that G is abelian. In particular, a rotation with irrational angle on the
one-dimensional torus T = R/Z is minimal and uniquely ergodic, the invariant
measure being the Haar measure. More generally, following Kronecker’s theo-
rem, the minimality of toral translations can thus be expressed as follows (for
a proof, see for instance [45]).

Proposition 2. The translation by the vector α = (α1, . . . , αd) ∈ Rd on the
d-dimensional torus Td = Rd/Zd is minimal if and only if α1, . . . , αd and 1 are
rationally independent.

Group translations are known to have discrete spectrum, but one has even
more: systems with discrete spectrum are in fact group translations. This is
detailed in the two next theorems.

Theorem 5 (Spectrum of group translations). Any group translation (G,T, µ)
(with G compact abelian group G equipped with the Haar measure µ) has discrete
spectrum. In particular, the spectrum of the rotation Rα on the one-dimensional
torus T with irrational angle α is the group exp(2iπZα) = {e2iπ kα; k ∈ Z}. Sim-
ilarly, the spectrum of the translation of angle (α1, . . . αd) on the d-dimensional

torus Td is the group exp(2iπ
∑
j Zαj) = {e2iπ

∑
j kjαj ; kj ∈ Z}.

The following statement, that can be considered as a reciprocal of the previ-
ous result, is due to [63]. See also [64] and see [54] for a nice historical account.
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Theorem 6. [63] Any invertible and ergodic system with discrete spectrum is
measure-theoretically isomorphic to a translation on a compact abelian group,
equiped with the Haar measure.

The proof of this assertion is based on the following idea: consider the group
Λ of eigenvalues of the operator U endowed with the discrete topology; the
group of the translation will be the character group of Λ, which is compact and
abelian.

Note that this connection between discrete spectrum and group translations
also holds in the topological setting. Indeed, group translations are topological
dynamical systems and Theorem 6 has its counterpart in topological terms.

We first introduce the corresponding definitions for topological spectrum.
Let (X,T ) be a topological dynamical system, where T is an homeomorphism.
A non-zero complex-valued continuous in C(X) is an eigenfunction for T if
there exists λ ∈ C such that ∀x ∈ X, f(Tx) = λf(x). The set of the eigenvalues
corresponding to those eigenfunctions is called the topological spectrum of the
operator U . Recall that two dynamical systems (X,S) and (Y, T ) are said to
be topologically conjugate (or topologically isomorphic) if there exists an home-
omorphism f from X onto Y which conjugates S and T , that is, f ◦ S = T ◦ f.
If two systems are topologically conjugate, then they have the same group of
eigenvalues. The operator U is said to have topological discrete spectrum if the
eigenfunctions span C(X).

Example 4. An ergodic translation on a compact metric abelian group has
topological discrete spectrum.

The topological version of theorem of Von Neumann becomes (see for in-
stance [64]):

Theorem 7. Any invertible and minimal topological dynamical system with
topological discrete spectrum is topologically conjugate to a minimal translation
on a compact abelian group.

4.3 Factors of substitutive dynamical systems

In this section, we illustrate the important connection between the eigenvalues
of a measure-theoretical dynamical system and its translation factors.

Two measure-theoretic dynamical systems (X1, T1, µ1,B1) and (X2, T2, µ2,
B2) are said to be measure-theoretically isomorphic if there exist two sets of full
measure B1 ∈ B1, B2 ∈ B2, a measurable map f : B1 → B2 such that

• the map f is one-to-one,

• the reciprocal map of f is measurable,

• f conjugates T1 and T2 over B1 and B2,

• µ2 is the image f∗µ1 of the measure µ1 with respect to f , that is,

∀B ∈ B2, µ1(f−1(B)) = µ2(B).

12



If the map is f is only onto, then (X2, T2, µ2,B2) is said to be a measure-
theoretic factor of (X1, T1, µ1, B1).

Lemma 1. The spectrum of a measure-theoretic dynamical system contains the
spectrum of any of its measure-theoretic factors.

Proof. Let (X1, T1, µ1) be a factor of (X,T, µ). Let f be the conjugacy map. Let
g1 be an eigenfunction of (X1, T1, µ1) for the eigenvalue λ. We have g1◦T1 = λ g1.
Let g = g1 ◦ f . Then g ◦ T = g1 ◦ f ◦ T = g1 ◦ T1 ◦ f = λ g1 ◦ f = λ g. Thus, g is
an eigenfunction of (X,T, µ) for λ.

In the other direction, the following lemma states that the knowledge on the
existence of some eigenvalue of a dynamical system allows the determination of
some translation factor.

Lemma 2. A rotation Rα of irrational angle α on the one-dimensional torus T
is a measure-theoretic factor of an ergodic dynamical system (X,T, µ) if and only
if e2iπ α is an eigenvalue of (X,T, µ); its spectrum then contains exp(2iπZα).

Proof. The necessary condition is a consequence of Lemma 1.
Let g be an eigenfunction of (X,T, µ) for the eigenvalue e2iπ α. Let U :=

{z ∈ C, |z| = 1}. We will prove that the rotation Tα : U → U, x 7→ e2iπ αx
is a measure-theoretic factor of (X,T, µ). This is equivalent (since (U, Tα) and
(T, Rα) are conjugate) to the fact that (T, Rα) is a factor of (X,T, µ).

By ergodicity, g is of constant modulus, which can be chosen equal to 1. We
thus have g : X → U, with g ◦ T = e2iπ αg = Tα ◦ g. It remains to prove that g
is onto.

We have µ(g−1U) = µ(X) = 1 6= 0, and the measure µ∗g (i.e., µ(g−1( ))) on
U is non-zero and invariant under Tα. By unique ergodicity of Tα, this measure
is nothing else than the Haar measure. Since g(X) is invariant under Tα and
of non-zero measure, we get g(X) = U, by ergodicity of Tα, and (U, Tα) is a
measure-theoretic factor of (X,T, µ).

Remark 1. More generally, a minimal translation Rα on the torus Td is a
measure-theoretic factor of an ergodic dynamical system (X,T, µ) if and only if,
for every 1 ≤ i ≤ d, e2iπαi is an eigenvalue of (X,T, µ) (with α = (α1, . . . , αd));
its spectrum then contains exp(2iπ

∑
j Zαj).

One interesting point in the spectral study of substitutive dynamical systems
is that we do not need to distinguish between topological and measure-theoretic
eigenfunctions, and thus between topological and measure-theoretic factors.

Theorem 8 (B. Host [42]). Let σ be a primitive and not shift-periodic substi-
tution. Then, any class (in L2) of eigenfunctions contains a continuous eigen-
function.
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4.4 Bounded remainder sets

We first start with a notion issued from classical discrepancy theory.
A subset A of Td with (Lebesgue) measure µ(A) is said to be a bounded

remainder set for the translation Rα : x 7→ x+ α (α ∈ Td) if there exists C > 0
such that for a.e. x the following holds:

∀N, |Card{0 ≤ n < N ; x+ nα ∈ A} −Nµ(A)| ≤ C.

Let f := 1A(x) − µ(A)1. The notation 1 stands for the constant function
that takes value 1. Note that

Card{n < N ; Rnα(x) ∈ A} −Nµ(A) =
∑
n<N

f(Rnαx).

Hence, A is a bounded remainder set if and only if the Birkhoff sum
∑
n<N f(Rnαx)

is a.e. uniformly bounded.
In the symbolic setting, if (Xu, S) is a uniquely ergodic symbolic shift, a

cylinder [w] is called a bounded remainder set if the following quantity ∆[w](u)
is bounded.

∆[w](u) = lim sup
n∈N

||u0u1 . . . un−1|w − nfw|.

Here the notation |v|w stands for the number of occurrences of the word w in
v, and fw stands for the frequency of the word w.

We now recall a classical statement in topological dynamics: bounded devi-
ations yield the existence of a coboundary. This will allow us to exhibit eigen-
functions. For more on the connections between this statement and bounded
remainder sets, see the survey [40].

Theorem 9 (Gottschalk–Hedlund [39]). Let X be a compact metric space and
T : X → X be a minimal homeomorphism. Let f : X → R be a continuous
function. Then

f = g − g ◦ T

for a continuous function g if and only if there exists C > 0 such that

|
N∑
n=0

f(Tn(x))| < C

for all N and all x.

Proposition 3. Let σ be a primitive substitution. Let w be a finite factor of
its language. If the cylinder [w] is a bounded remainder set, then its frequency
fw is an eigenvalue of (Xσ, S).

Proof. Assume that the cylinder [w] is a bounded remainder set. Let f =
1[w](x)− fw1. Since [w] is a bounded remainder set, we can apply Theorem 9:
there exists g such that f = g − g ◦ S.
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Note that e2iπ1[w](v) = 1 for any v ∈ Xσ. This yields

exp2iπg◦S = exp2iπfw exp2iπg .

Hence exp2iπg is an eigenfunction of the operator U associated with the eigen-
value fw.

Proposition 4. Let σ be a primitive Pisot substitution. Then (Xσ, S) admits
a toral translation factor: let α denote the dominant eigenvalue of the incidence
matrix of σ; the spectrum of the substitutive dynamical system associated with σ
contains the set exp(2πiZ[α]). In particular, substitutive dynamical systems of
Pisot type are never weakly mixing. Furthermore any irreducible Pisot substi-
tutive dynamical system over d letters admits as a factor a minimal translation
on the torus Td−1.

Proof. The proof relies on Lemma 2, Remark 1 and on the fact that Z[α] is
of rank d − 1 if σ is assumed to be irreducible. Indeed, one checks that the
coordinates of the letter frequency vector f (that is, the right eigenvector of
Mσ associated with α normalized so that the sum of its coordinates is equal
to one) belong to Q(α). These coordinates are in fact rationally independent.

Indeed, consider a non-trivial linear relation
∑d
i=1 firi = 0 for some vector

r = (ri) with integer entries. We then use the fact that the eigenvalues of
the incidence matrix are simple and algebraic conjugates; the corresponding
eigenvectors obtained by applying the canonical Galois automorphisms to the
vector f = (fi) with coordinates in Q(α) (one replaces α by its conjugates) are
thus linearly independent. But then the vector r is orthogonal to d linearly
independent vectors, a contradiction.

The main issue is now to prove that an irreducible Pisot substitutive dynam-
ical system over d letters does not only admit as a factor a minimal translation
on the torus Td−1, but that is measure-theoretically isomorphic with this trans-
lation.

Natural codings and bounded remainder sets. Let Λ be a full-rank
lattice in Rd and Tt : Rd/Λ → Rd/Λ, x 7→ x + t a given toral translation. Let
R ⊂ Rd be a fundamental domain for Λ and T̃t : R → R the mapping induced
by Tt on R. If R = R1 ∪ · · · ∪ Rk is a partition of R (up to measure zero)
such that for each 1 ≤ i ≤ k the restriction T̃t|Ri is given by the translation
x 7→ x + ti for some ti ∈ Rd, and u is the coding of a point x ∈ R with
respect to this partition, we call u a natural coding of Tt. A symbolic dynamical
system (X,Σ) is a natural coding of (Rd/Λ, Tt) if (X,Σ) and (Rd/Λ, Tt) are
measure-theoretically isomorphic and every element of X is a natural coding of
the orbit of some point of the d-dimensional torus Rd/Λ (with respect to some
fixed partition).

Observe that if (X,S) is a natural coding of a minimal translation (Rd/Λ, Tt)
with balanced language, then the elements of its associated partition are bounded
remainder sets [1, Proposition 7]. Moreover, A is a bounded remainder set if
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it is an atom of a partition that gives rise to a natural coding of a translation
whose induced mapping on A is again a translation; see [53] (we also refer to
[35] for an analogous characterization of bounded remainder sets).

5 Pisot conjecture and Rauzy fractals

We have seen that Pisot substitutions admit a toral translation factor. It is
widely believed that Pisot irreducible substitutions2 have discrete spectrum:
this is called the Pisot conjecture. For more details, see e.g. [51], Chap. 7 and
[14]. See also in the same vein [57] whose main concern is Pisot automorphisms
of the torus (instead of substitutions).

Example 5. Consider as a first example the Fibonacci substitution σ : a 7→
ab, b 7→ a; (Xσ, S) is measure-theoretically isomorphic to (R/Z, R 1+

√
5

2

).

For more details see e.g. Chap. 5 in [51]. Furthermore, two-letter Pisot
substitutions are known to have discrete spectrum [13, 41, 43]. See also [14, 44,
60, 6] for more on Pisot substitutive dynamical systems.

If the Pisot irreducible substitution σ is furthermore assumed to be uni-
modular, then (Xσ, S) is conjectured to be measure-theoretically isomorphic to
a toral translation. One strategy for providing a fundamental domain for the
toral translation has been developed by Rauzy in the case of the Tribonacci sub-
stitution σ : 1 7→ 12, 2 7→ 13, 3 7→ 1 in [52]. It is a primitive, unimodular and
Pisot irreducible substitution. Its characteristic polynomial is X3 −X2 −X − 1
and its dominant eigenvalue β > 1 is a Pisot number.

Theorem 10 ([52]). Let σ be the Tribonacci substitution σ : 1 7→ 12, 2 7→
13, 3 7→ 1. Let β be the Perron–Frobenius eigenvalue of σ. Let Rβ : T2 → T2,
x 7→ x + (1/β, 1/β2). The symbolic dynamical system (Xσ, S) is measure-
theoretically isomorphic to the toral translation (T2, Rβ).

The proof makes use of the fact that the Tribonacci sequence σ∞(1) =
limn→∞ σn(1) codes the orbit of the point 0 under the action of the translation
Rβ with respect to a particular partition of T2 (it is a natural coding). In order
to get this partition, one constructs a so-called Rauzy fractal as follows. One
first represents (un)n∈N = σ∞(1) as a broken line via the abelianization map l

l : A∗ → N3, w 7→ (|w|1, |w|2, |w|3).

The vertices of this broken line belong to Z3 and are of the form l(u0 · · ·un)
for n ∈ N. We then project the vertices of this broken line according to the
eigenspaces of the incidence matrix Mσ, that is, along its expanding line onto
its contracting plane. The corresponding projection is denoted by π. The Rauzy
fractal associated with σ is then obtained by taking the closure of this set of
points, i.e., as

Rσ := {π ◦ l(u0 · · ·un) ; n ∈ N}.
2Recall that a Pisot substitution is said irreducible if the characteristic polynomial of its

incidence matrix is irreducible.
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We then divide Rσ into the three pieces defined for i = 1, 2, 3 as

Rσ(i) := {π ◦ l(u0 · · ·un) ; un = i, n ∈ N}.

Theorem 10 can be reformulated as follows: the Rauzy fractal Rσ is a funda-
mental domain of T2 and σ∞(1) codes the orbit of the point 0 under the action
of the translation Rβ with respect to the particular partition (Rσ(i))i=1,2,3 of
the fundamental domain Rσ of T2. Figure 1 depicts a Rauzy fractal together
with a piece of periodic tiling that illustrates the fact that it is a fundamental
domain for the toral translation Rβ on T2.

Figure 1: The Rauzy fractal and a piece of the associated periodic tiling.

Rauzy fractals were first introduced in [52] in the case of the Tribonacci
substitution, and then in [62], in the case of the β-numeration associated with
the Tribonacci number. Rauzy fractals can more generally be associated with
Pisot substitutions (see the surveys [51, 16, 6]), as well as with Pisot β-shifts
under the name of central tiles (see [3, 4, 5]).

A statement generalizing Theorem 10 is conjectured to hold for any Pisot
irreducible substitution; note that the corresponding parameters would be al-
gebraic, since they are given by eigenvalues and eigenvectors of the incidence
matrix of the substitution. Note also that the subtiles Rσ(i) of the Rauzy frac-
tal are bounded remainder sets for the toral translation Rβ (as a consequence
of the balance properties).

Theorem 20 will provide an a.e. generalization of Theorem 10. Indeed,
thanks to the S-adic formalism that we now introduce, a.e. translation of T2

admits a symbolic coding.

6 S-adic words

We now extend the Pisot substitutive dynamics to the S-adic framework.
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6.1 First definitions

Let S be a set of substitutions. Let s = (σn)n∈N ∈ SN, with σn : A∗n+1 → A∗n,
be a sequence of substitutions, and let (an)n∈N be a sequence of letters with
an ∈ An for all n. We say that the infinite word u ∈ AN admits ((σn, an))n as
an S-adic representation if

u = lim
n→∞

σ0σ1 · · ·σn−1(an).

The sequence s is called the directive sequence and the sequences of letters (an)n
will only play a minor role compared to the directive sequence. If the set S is
finite, it makes no difference to consider a constant alphabet (i.e., A∗n = A∗
for all n and for all substitution σ in S). As we will constantly use products of
substitutions, we introduce the notation σ[k,l) for the product σkσk+1 . . . σk+l−1.
In particular, σ[0,n) = σ0σ1 . . . σn−1.

A word admits many possible S-adic representations. But some S-adic rep-
resentations might be useful to get information about the word. More precisely,
some properties are actually equivalent to have some S-adic representation of a
special kind (see in particular Theorem 11 for minimality and Theorem 13 for
linear recurrence).

In order to avoid degeneracy construction we introduce the following defini-
tion. An S-adic representation defined by the directive sequence (σn)n∈N, where
σn : A∗n+1 → A∗n, is everywhere growing if for any sequence of letters (an)n, one
has

lim
n→+∞

|σ[0,n)(an)| = +∞.

To be “S-adic” is not an intrinsic property of an infinite word, but a way to
construct it. Indeed, without further restriction, every infinite word u = (un)n ∈
AN admits an S-adic representation. Here, we recall the classical construction
due to J. Cassaigne. We consider u = (un)n ∈ AN. We introduce a further
letter ` 6∈ A, and we work on A ∪ {`}. For every letter a ∈ A, we introduce
the substitution σa defined over the alphabet A ∪ {`} as σa(b) = b, for b ∈ A,
and σa(`) = `a. We also consider the substitution τ` over the alphabet A∪ {`}
defined as τ`(`) = u0, and τ`(b) = b, for all b ∈ A. One checks that

u = lim
n→+∞

τ` σu1 σu1 . . . σun(`).

Hence u admits an S-adic representation with S = {σa | a ∈ A} ∪ {τ`}. We
stress the fact that, despite u belongs to AN, this S-representation involves
the larger-size alphabet A ∪ {`}. Observe also that this representation is not
everywhere growing.

Given an everywhere growing directive sequence s of substitutions that are
all defined over the same finite alphabet A, the shift associated with s = (σn)n
is the set of infinite words whose language (i.e., whose set of factors) is included
in the intersection of languages⋂

n

Lσ0···σn−1(A).
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6.2 Sturmian words

We recall the definition of Sturmian words for which the Fibonacci word is
a particular case. We consider the substitutions τa and τb defined over the
alphabet A = {a, b} by τa : a 7→ a, b 7→ ab and τb : a 7→ ba, b 7→ b. Let (in) ∈
{a, b}N. The following limits

u = lim
n→∞

τi0τi1 · · · τin−1
(a) = lim

n→∞
τi0τi1 · · · τin−1

(b) (1)

exist and coincide whenever the directive sequence (in)n is not ultimately con-
stant (it is easily shown that the shortest of the two images by τi0τi1 . . . τin−1

is
a prefix of the other).

The infinite words thus produced belong to the class of Sturmian words.
More generally, a Sturmian word is an infinite word whose set of factors coin-
cides with the set of factors of a sequence u of the form (1), with the sequence
(in)n≥0 being not ultimately constant (that is, it is an elementt of the symbolic
dynamical system Xu generated by u, since (Xu, S) is minimal).

Let us consider a second set of substitutions µa : a 7→ a, b 7→ ba and µ1 : a 7→
ab, b 7→ b. In this latter case, the two corresponding limits do exist, namely

wa = lim
n→∞

µi0µi1 · · ·µin(a) and wb = lim
n→∞

µi0µi1 · · ·µin(b)

for any sequence (in) ∈ {a, b}N. As wa starts with a and wb with b they do not
coincide. But, provided the directive sequence (in)n is not ultimately constant,
the languages generated by wa and wb are the same, and they also coincide with
the language generated by u (for the same sequence (in)).

6.3 Arnoux-Rauzy words

Arnoux and Rauzy [7] proposed a generalization of Sturmian words to higher size
alphabets (which initiated an important literature around so-called episturmian
words).

Let A = {1, 2, . . . , d}. The set of Arnoux-Rauzy substitutions is defined as
SAR = {µi | i ∈ A} where

µi : i 7→ i, j 7→ ji for j ∈ A \ {i} .

One recovers Sturmian words in the case d = 2. An Arnoux-Rauzy word [7] is
an infinite word ω ∈ AN whose set of factors coincides with the set of factors of
a sequence of the form

lim
n→∞

µi0µi1 · · ·µin(1),

where the sequence (in)n≥0 ∈ AN is such that every letter in A occurs infinitely
often in (in)n≥0. For more on Arnoux-Rauzy words, see [29, 28].

It was conjectured since the early nineties (see e.g. [28]) that each Arnoux-
Rauzy word is a natural coding of a translation on the torus. A counterexample
to this conjecture was provided in [28] by constructing unbalanced Arnoux-
Rauzy words (unbalanced words cannot come from natural codings by a result of
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Rauzy [53]). Moreover, [29] even showed that there exist Arnoux-Rauzy words u
on three letters such that (Xu, S) is weakly mixing (w.r.t. the unique S-invariant
probability measure on Xu). Theorem 17 below confirms the conjecture of
Arnoux and Rauzy almost everywhere.

6.4 Minimality and linear recurrence

In this section we introduce two notions of primitivity for S-adic expansions.
We relate them respectively to minimality (Theorem 11) and linear recurrence
(Theorem 12 and 13).

Definition 1 (Primitivity). An S-adic expansion with directive sequence (σn)n
is said weakly primitive if, for each n, there exists r such that the substitution
σn · · · σn+r is positive.

It is said strongly primitive if the set of substitutions {σn} is finite, and if
there exists r such that the substitution σn · · · σn+r is positive, for each n.

Theorem 11. If an infinite word u admits a weakly primitive S-adic represen-
tation, then it is uniformly recurrent (and the shift Xu is minimal).

Proof. Let (σn)n be the weakly primitive directive sequence of substitutions of
an S-adic representation of u. Observe that this representation is necessarily
everywhere growing. Consider a factor w of the language. It occurs in some
σ[0,n)(i) for some integer n ≥ 0 and some letter i ∈ A. By definition of weak
primitivity, there exists an integer r such that σ[n,n+r) is positive. Hence w
appears in all images of letters by σ[0,n+r) which implies uniform recurrence.

The following statement from [33] illustrates the fact that strong primitivity
plays the role of primitivity in the S-adic context.

Theorem 12 ([33]). Let u be an S-adic word having a strongly primitive S-adic
expansion. Then, the associated shift (Xu, T ) is minimal (that is, u is uniformly
recurrent), uniquely ergodic, and it has at most linear factor complexity.

Strong primitivity is thus closely related to linear recurrence, that can be
considered as a property lying in between being substitutive and being S-adic.
With an extra condition of properness one even obtains the following character-
ization of linear recurrence. A substitution over A is said proper if there exist
two letters b, e ∈ A such that for all a ∈ A, σ(a) begins with b and ends with e.
An S-adic system is said to be proper if the substitutions in S are proper.

Theorem 13 (Linear recurrence [33]). A subshift (X,T ) is linearly recurrent
if and only if it is a strongly primitive and proper S-adic subshift.

Let us mention that an essential ingredient in the proofs of Theorem 12 and
Theorem 13 is the uniform growth of the matrices M(0,n) as it was the case for
substitutive systems. We refer to [33] for the proof.

With the following example, we stress the fact that strong primitivity alone
does not imply linear recurrence. Indeed, linear recurrence requires the property
of being also proper S-adic.
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Example 6. We recall the example of [33] of a strongly primitive S-adic word,
that is both uniformly recurrent, that has linear factor complexity, but that is
not linearly recurrent. Take S = {σ, τ} with σ : a 7→ acb, b 7→ bab, c 7→ cbc,
τ : a 7→ abc, b 7→ acb, c 7→ aac, and consider the S-adic expansion

lim
n→+∞

σ τ σ τ · · · σnτ(a).

6.5 Invariant measures

This section is devoted to frequencies of S-adic systems, and more generally,
to their invariant measures. We use the following notation: Mn stands for the
incidence matrix of σn, and M[0,n) = M0M1 · · ·Mn−1.

S-adic representations prove to be convenient to find invariant measures.
Indeed, given a directive sequence (σn)n that is everywhere growing, the limit
cone determined by the incidence matrices of the substitutions σn, namely⋂

n

M[0,n)Rd+,

is intimately related to letter frequencies in the corresponding S-adic shift: it
is the convex hull of the set of half lines R+f generated by the letter frequency
vectors f of words in the associated S-adic shift. Nevertheless, the situation is
more contrasted for S-adic systems than for substitutive dynamical systems, for
which primitivity implies unique ergodicity (see Theorem 1). This is well known
since Keane’s counterexample for unique ergodicity for 4-interval exchanges [46]:
weak primitivity does not imply unique ergodicity.

Recall that for a primitive matrix M , the cones MnRd+ nest down to a single
line directed by this eigenvector at an exponential convergence speed, according
to the Perron-Frobenius Theorem (see e.g. [59]). The following condition is
a sufficient condition for the sequence of cones M[0,n)Rd+ to nest down to a
single strictly positive direction as n tends to infinity (provided that the square
matrices Mn have all non-negative entries); in other words, the columns of the
product M[0,n) tend to be proportional.

Theorem 14 ([37, pp. 91–95]). Let (Mn)n be a sequence of non-negative integer
matrices of size d and note M[0,n) = M0M1 . . .Mn−1. Assume that there exist
a strictly positive matrix B and indices j1 < k1 ≤ j2 < k2 ≤ · · · such that
B = Mj1 · · ·Mk1−1 = Mj2 · · ·Mk2−1 = · · · . Then,⋂

n∈N
M[0,n)Rd+ = R+f for some positive vector f ∈ Rd+.

The proof of that theorem relies on classical methods for non-negative ma-
trices, namely Birkhoff contraction coefficient estimates and projective Hilbert
metric [22].

This vector f , when normalized so that the sum of its coordinates equals 1,
is called the generalized right eigenvector associated with the S-adic represen-
tation. Note that there is no way to define a left eigenvector as the sequence of
rows vary dramatically in the sequence of matrices (M[0,n))n.
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Now, we consider frequencies of words or, equivalently, invariant measures.

Theorem 15. Let X be an S-adic shift with directive sequence τ = (τn)n where
τn : A∗n+1 → A∗n and A0 = {1, . . . , d}. Denote by (Mn)n the associated sequence
of incidence matrices.

If the sequence (τn)n is everywhere growing, then the cone

C(0) =
⋂
n→∞

M[0,n)Rd+

parametrizes the letter frequencies: the set of vectors f ∈ C(0) such that f1+. . .+
fd = 1 coincides with the image of the map which sends a shift-invariant proba-
bility measure µ on X to the vector of letter frequencies (µ([1]), µ([2]), . . . , µ([d])).
In particular X has uniform letter frequencies if and only if the cone C(0) is one-
dimensional.

If, furthermore, the limit cone

C(k) =
⋂
n→∞

M[k,n)Rd+

is one-dimensional, then the S-adic dynamical system (X,T ) is uniquely ergodic.

Note that if the matrices are invertible, then C(0) is one-dimensional if and
only if C(k) is one-dimensional for any k. In [21], a somewhat finer version of
Theorem 15 is proved in the context of Bratteli diagrams where a similar limit
cone is identified to the set of invariant ergodic probability measures. For more
on the connections between Vershik adic systems and S-adic ones, see [16, Chap.
6].

7 Pisot S-adic shifts

We now introduce an S-adic counterpart to the notion of Pisot substitution.

7.1 Lyapunov exponents and convergence

Let S be a finite set of substitutions with invertible incidence matrices, and
let (D,S, µ) with D ⊂ SN be an (ergodic) shift equipped with a probability
measure µ. Here again S stands for the shift acting on D. Given an infinite
sequence of substitutions γ = (γn)n ∈ D, we define

An(γ) = Mγ0Mγ1 . . .Mγn−1
,

where Mi is the incidence matrix of the substitution γi. In particular, A1(γ) =
Mγ0 and we have the following cocycle relation (recall that S stands for the
shift):

Am+n(γ) = Am(γ)An(Smγ).

The Lyapunov exponents of the cocycle An with respect to the ergodic prob-
ability measure µ provide the exponential growth of eigenvalues of the matrices
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An along a µ-generic sequence γ. Lyapunov exponents were first defined by
Furstenberg [38, 37], and, in a sense, their existence generalizes the Birkhoff
ergodic Theorem in a non-commutative setting. For general references on Lya-
punov exponents, we refer to [23] and [36]. We recall that the incidence matrices
of the substitutions in S are assumed to be invertible (in other words A1(γ) be-
longs to GL(d,R)). We say that the cocycle An is log-integrable if∫

ΣG

log max(‖A1(γ)‖, ‖A1(γ)−1‖)dµ(γ) <∞.

Since the matrices A1(γ) are bounded (the set S is finite), this condition is
automatically satisfied. When the matrices are not invertible, or without log-
integrability, one may obtain infinite Lyapunov exponents.

Assuming the ergodicity of µ and the log-integrability of A1, the first Lya-
punov exponent of (D,S, ν) is the µ-a.e. limit

θµ1 = lim
n→∞

log ‖An(γ)‖
n

.

The other Lyapunov exponents θµ2 ≥ θ
µ
3 . . . ≥ θ

µ
d may be defined recursively by

the following almost everywhere limits, for k = 1, . . . , d :

θµ1 + θµ2 + · · ·+ θµk = lim
n→∞

log ‖ ∧k An(γ)‖
n

where ∧k stands for the k-th exterior product.
We will mostly be interested by the two first Lyapunov exponents θµ1 and

θµ2 . A useful characterization of θµ2 is as follows. Assume that for a.e. γ the
sequence of nested cones (An(γ)Rd+)n converges to a line f(γ). Then, we have
the µ-almost everywhere limit

θµ2 = lim
n→∞

log ‖An|f(γ)⊥‖
n

(2)

where ‖An(γ)|f(γ)⊥‖ = sup
v∈f(γ)⊥

‖Anv‖
‖v‖

.

7.2 Simultaneous approximation and cone convergence

If we follow the vocabulary of Markov chains [59], or of continued fractions [24,
58], it is natural to consider the following definitions.

Definition 2 (Weak and strong convergence). Let X be an S-adic shift with
directive sequence τ = (τn)n. Denote by (Mn)n the associated sequence of
incidence matrices. We assume that the hypotheses of Theorem 14 hold. Let f
be the generalized right eigenvector on the alphabet A = {1, . . . , d} (normalized
by f1 + . . .+ fd = 1). Let (e1, . . . , ed) be the canonical basis of Rd. The S-adic
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system X is weakly convergent toward the non-negative half-line directed by f
if

∀i ∈ {1, . . . , d}, lim
n→∞

d

(
M0 · · ·Mn−1ei
‖M0 · · ·Mn−1ei‖1

, f

)
= 0.

It is said to be strongly convergent if for a.e. f

∀i ∈ {1, . . . , d}, lim
n→∞

d(M0 · · ·Mn−1ei,Rf) = 0.

If, for any i, ‖M0 · · ·Mn−1ei‖ tends to infinity as n tends to infinity, then the
strong convergence for the vector f is equivalent to the fact that the sequence of
nested cones (M0 · · ·Mn−1Rd+)n tends to the non-negative half-line generated by
f : the points M0 · · ·Mn−1ei/‖M0 · · ·Mn−1ei‖1 are exactly the extremal points
of the intersection of the cone M0 · · ·Mn−1Rd+ with the set of vectors of norm
1. Moreover, if θi,n is the angle between M0 · · ·Mn−1ei and f , then

d

(
M0 · · ·Mn−1ei
‖M0 · · ·Mn−1ei‖1

, f

)
= 2 sin

(
θi,n
2

)
and

d(M0 · · ·Mn−1ei,Rf)

‖M0 · · ·Mn−1ei‖2
= sin(θi,n).

A finite product of substitutions γ0 . . . γk−1 is said positive if the associated
matrix Mγ0 . . .Mγk−1

is positive. Recall that An(γ) = Mγ0 · · ·Mγn−1
.

Theorem 16. Let S be a finite set of substitutions with invertible incidence
matrices, and let (D,S, µ), with D ⊂ SN, be an argodic shift. Assume that there
exists a positive product of substitutions whose associated cylinder has positive
mass for µ. Then, for µ-almost every sequence γ ∈ D, the corresponding S-adic
system XD(γ) is uniquely ergodic. Furthermore, one has

θµ1 > 0 and θµ1 > θµ2 .

Let f(γ) = (fi(γ))i∈A denote the generalized right eigenvector of a µ-generic
sequence γ. For µ-almost every S-adic sequence in D, XD(γ) is weakly conver-
gent:

∀i ∈ {1, . . . , d}, lim
n→∞

1

n
log d

(
An(γ)ei
‖An(γ)ei‖1

, f(γ)

)
= θµ2 − θ

µ
1 .

Moreover, if θµ2 < 0, then, for µ-almost every S-adic sequence in D, XD(γ)
is strongly convergent:

lim
n→∞

max
i∈A

log d(An(γ)ei,Rf(γ))

n
= θµ2 ,

and for µ-almost all γ in D, there exists a constant C = C(γ) such that for
every letter i ∈ A, every word u in XD(γ) and every n, we have

||u0 . . . un−1|i − nfi| ≤ C.

In particular, each word in XD(γ) is C-balanced.
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Proof. We only sketch the proof. According to Theorem 15, uniform letter
frequencies for the S-adic system associated with γ ∈ D is equivalent to the
fact that the sequence of nested cones (An(γ)Rd+)n tends to a half-line Rf(γ).
Let B = Mγ0 . . .Mγk−1

be the positive matrix associated with the positive
product γ0 . . . γk−1 which has positive mass. We can use the Birkhoff ergodic
Theorem to see that µ-almost every sequence D contains infinitely often the
factor γ0 . . . γk−1. We can hence apply Theorem 14, and get that An(γ)Rd+
contracts almost everywhere to a cone. The existence of the positive path with
positive mass thus implies that µ-almost every S-adic path in D gives a uniquely
ergodic S-adic system. Moreover, because of the non-negativity of the matrices,
we get that the exponential growth of log ‖An(γ)‖ is at least of the order of
log ‖Bbnµ([γ0...γk−1])c‖. It follows that θµ1 > 0.

To prove that θµ1 > θµ2 , we only need to remark that B induces a contraction
of the Hilbert metric (by positivity). Therefore, the sequence of nested cones
An(γ)Rd+ shrinks exponentially fast toward the generalized eigendirection. As
it can be seen with (2), this exponential rate is θµ2 − θ

µ
1 < 0.

For the proof of the convergence properties, see [47] where a similar result
is shown in the context of Diophantine approximation.

We only sketch the proof of the balance properties which is very similar to
what is done in [65] or [2]. We have seen that letters have uniform frequencies.
Let γ = (γn)n be a generic directive sequence of substitutions, Xγ the associated
shift space, and f the associated letter frequency vector. Let Wn = {γ[0,n)(a) |
a ∈ A} be the set of images of letters by γ[0,n) = γ0 . . . γn−1. Then, by definition
of Lyapunov exponents, for every ε > 0, for n large enough, for all w ∈Wn and
all i ∈ A, we have

exp(n(θµ1 − ε) ≤ |w| ≤ exp(n(θµ1 + ε))

and
||w|i − |w|fi| ≤ exp(n(θµ2 + ε)).

In particular, we get that for w ∈Wn with n large enough

log(|w|i − |w|fi|)
log(|w|)

≤ θµ2 + ε

θµ1 − ε
.

This proves that the balancedness property holds for the elements of Wn. Now
any word in X may be decomposed with respect to the building blocks Wn

(according to the Dumont-Thomas prefix-suffix decomposition [32]). From that
decomposition, it remains to perform a summation to obtain the theorem.

Note that the quantity 1 − θµ2
θµ1

= 1
θµ1

(θµ1 − θµ2 ) is expressed in [47] as the

uniform approximation exponent for unimodular continued fractions algorithms
such as the Jacobi-Perron algorithm (the coefficient 1/θµ1 is here to take care of
the size of the denominators); see also [10, 11] in the same vein.

As already discussed in Section 3.2, a characterization of balanced words
generated by primitive substitutions is given in [1, Corollary 15]. It is shown

25



that there exist balanced fixed points of substitutions for which θ2 = 0, i.e.,
the incidence matrix of the substitution has an eigenvalue of modulus one. It
is even proved that if a primitive substitution generates an infinite word that is
balanced, then all eigenvalues of modulus one of the incidence matrix have to
be roots of unity.

7.3 S-adic Pisot shifts

We now can introduce the S-adic counterpart of the notion of irreducible sub-
stitution. Recall that a substitution is said irreducible Pisot if the characteristic
polynomial of its incidence matrix is the minimal polynomial of a Pisot number,
that is, a real algebraic integer larger than 1 whose other Galois conjugates are
smaller than 1 in modulus.

Let S be a finite set of substitutions with invertible incidence matrices, and
let (D,S, µ) with D ⊂ SN be an (ergodic) shift equipped with a probability
measure µ. We say that (D,S, µ) satisfies the Pisot condition if

θµ1 > 0 > θµ2 .

By Theorem 16, an S-adic shift (satisfying the general assumptions of the the-
orem) endowed with a measure µ such that the Lyapunov exponents satisfy
the Pisot condition is such that for µ-almost every directive sequence γ, the
associated S-adic system XD(γ) is made of balanced words. This property is
known to hold for some continued fraction algorithms endowed with their abso-
lute continuous measure: the standard continued fractions, the Brun algorithm
in dimension 3 [27], the Jacobi-Perron algorithm in dimension 3 [25, 26]. Some
more precise results that hold for all measures are proven in [8].

The analogs of primitivity and algebraic irreducibility are then the following.
The directive sequence γ is said to be algebraically irreducible if, for each k ∈ N,
the characteristic polynomial of M[k,`) is irreducible for all sufficiently large `.
Recall that the the sequence γ is said to be (weakly) primitive if, for each k ∈ N,
M[k,`) is a positive matrix for some ` > k.

7.4 Rauzy fractals

We now have gathered all the required elements in order to define a Rauzy
fractal in the framework of Pisot S-adic shifts.

Assume we are given a (weakly) primitive directive sequence γ. Let (Xγ , S)
be the shift generated by γ and Lγ stand for its language. Let u be an infinite
word in Xγ of the form

u = lim γ0 · · · γn(in).

Such a word is called a limit word for the directive sequence γ and exists by
primitivity. The set of factors of u coincides with the language Lγ . Assume that
the conditions of Theorem 14 hold. Let f be the generalized right eignevector
of γ.
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The Rauzy fractal R is defined as the closure of the projection of the vertices
of the broken lines defined by limit words of γ. More precisely, let 1⊥ be the
hyperplane orthogonal to the vector with entries all equal to 1, that is, 1⊥ is
the hyperplane of vectors whose entries sum up to 0.

The Rauzy fractal (in the representation space 1⊥) associated with the di-
rective sequence of substitutions γ over the alphabet A with generalized right
eigenvector f is

Rγ = {π ◦ l(u0 · · ·un) ; n ∈ N},

where π denotes the projection along the direction of f onto 1⊥. The Rauzy
fractal has natural subpieces (or subtiles) defined by

Rγ(i) = {π ◦ l(u0 · · ·un) ; un = i, n ∈ N}.

Note that we choose to project here onto the plane 1⊥, whereas in Section 5
we project onto the contracting plane of Mσ. There is no well-defined notion
of contracting plane in the present context, hence our projection choice. Note
also that under the assumptions we will use below, Rγ will not depend on the
choice of the limit word u.

The next statement shows that the Rauzy fractal R corresponding to a se-
quence γ is bounded if Lγ is balanced. Therefore, R is compact if the broken
lines provided by limit words remain at a bounded distance from the general-
ized right eigendirection Rf . It establishes a connection between the degree of
balancedness and the diameter of R. Here ‖ · ‖ denotes the maximum norm.
For the proof, see [19].

Lemma 3 ([19] ). Let γ be a (weakly) primitive sequence of substitutions with
generalized right eigenvector f . Then R is bounded if and only if Lγ is balanced.
If Lγ is C-balanced, then R ⊂ [−C,C]d ∩ 1⊥.

Irrationality and strong convergence In the periodic case with a uni-
modular irreducible Pisot substitution σ, the incidence matrix Mσ has an ex-
panding right eigenline and a contractive right hyperplane (that is orthogonal
to an expanding left eigenvector), i.e., the matrix Mσ contracts the space Rd
towards the expanding eigenline. Moreover, irreducibility implies that the coor-
dinates of the expanding eigenvector are rationally independent. These proper-
ties are crucial for proving that the Rauzy fractal R has positive measure and
induces a (multiple) tiling of the representation space 1⊥. In the S-adic setting,
the cones M[0,n) Rd+ converge weakly to the direction of the generalized right
eigenvector f . For the proof, see again [19].

Lemma 4 ([19]). Let γ be an algebraically irreducible sequence of substitutions
with generalized right eigenvector f and balanced language Lγ . Then the coor-
dinates of f are rationally independent.

Now, in order to set up a representation map from Xγ to R, we also define
refinements of the subtiles of R by

R(w) = {π(l(p)) : p ∈ A∗, pw is a prefix of a limit word of γ} (w ∈ A∗).
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Let γ be a primitive, algebraically irreducible, and recurrent sequence of
substitutions with balanced language Lγ . Then one checks (see [19]) that⋂
n∈NR(ζ0ζ1 · · · ζn−1) is a single point in R for each infinite word ζ0ζ1 · · · ∈ Xγ .

Therefore, the representation map

ϕ : Xγ → R, ζ0ζ1 · · · 7→
⋂
n∈N
R(ζ0ζ1 · · · ζn−1),

is well-defined, continuous and surjective.
As applications of this construction, we will see in the next section, with

the examples of Arnoux-Rauzy and Brun S-adis systems, how to deduce a.e.
spectral properties.

8 S-adic shifts associated with continued frac-
tion algorithms

8.1 Arnoux-Rauzy words

Using Rauzy fractals, it is possible to obtain the following result that extends-
Theorem 10 to a non-algebraic setting.

Theorem 17 ([19]). Let SAR be the set of Arnoux-Rauzy substitutions over
three letters and consider the shift (SNAR, S, ν) for some shift invariant ergodic
probability measure ν which assigns positive measure to each cylinder. Then
(SNAR, S, ν) satisfies the Pisot condition. Moreover, for ν-almost all sequences
γ ∈ SN the S-adic shift (Xγ , S) is measure-theoretically isomorphic to a trans-
lation on the torus T2.

As an example of measure satisfying the assumptions of Theorem 17, con-
sider the measure of maximal entropy for the suspension flow of the Rauzy
gasket constructed in [9].

One can also provide a (uncountable) class of non-substitutive Arnoux-
Rauzy words that give rise to translations on the torus T2. To this end we
introduce a terminology that comes from the associated Arnoux-Rauzy contin-
ued fraction algorithm (which was also defined in [7]). A directive sequence
γ = (γn) ∈ SN that contains each αi (i = 1, 2, 3) infinitely often is said to have
bounded weak partial quotients if there is h ∈ N such that γn = γn+1 = · · · =
γn+h does not hold for any n ∈ N, and bounded strong partial quotients if every
substitution in the directive sequence γ occurs with bounded gap.

Theorem 18. Let SAR = {α1, α2, α3} be the set of Arnoux-Rauzy substitutions
over three letters. If γ ∈ SN is recurrent, contains each αi (i = 1, 2, 3) infinitely
often and has bounded weak partial quotients, then the S-adic shift (Xγ , S) is
measure-theoretically isomorphic to a translation on the torus T2.

Boundedness of the strong partial quotients provides a nice characterization
of linear recurrence for Arnoux-Rauzy words (see Proposition 6 below). With
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the extra assumption of recurrence (not only on letters but on any factor) of
the directive sequence, we obtain pure discrete spectrum.

Corollary 1. Any linearly recurrent Arnoux-Rauzy word with recurrent di-
rective sequence generates a symbolic dynamical system that has pure discrete
spectrum.

These last two statements are consequences of the following results.

Proposition 5 ([17, Theorem 7 and its proof]). Let γ ∈ {α1, α2, α3}N. If each
αi occurs infinitely often in γ and if we do not have γn = γn+1 = · · · = γn+h

for any n ∈ N, then L(n)
γ is (2h+1)-balanced for each n ∈ N.

Proposition 6. An Arnoux-Rauzy word is linearly recurrent if and only if it
has bounded strong partial quotients, that is, each substitution of SAR occurs in
its directive sequence with bounded gaps.

Proof. Let u be an Arnoux-Rauzy word with directive sequence γ. It is easy to
check that strong partial quotients have to be bounded for an Arnoux-Rauzy
word u to be linearly recurrent. The converse is a direct consequence of [33]
by noticing that the largest difference between two consecutive occurrences of a
word of length 2 in u(n) is bounded (with respect to n), where u(n) is associated
with Sn(γ).

8.2 Brun words

Let ∆2 := {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ x2 ≤ 1} be equipped with the Lebesgue
measure λ2. Brun [27] devised a generalized continued fraction algorithm for
vectors (x1, x2) ∈ ∆2. This algorithm (in its additive form) is defined by the
mapping TBrun : ∆2 → ∆2,

TBrun : (x1, x2) 7→


(

x1

1−x2
, x2

1−x2

)
, for x2 ≤ 1

2 ,(
x1

x2
, 1−x2

x2

)
, for 1

2 ≤ x2 ≤ 1− x1,(
1−x2

x2
, x1

x2

)
, for 1− x1 ≤ x2;

(3)

for later use, we define B(i) to be the set of (x1, x2) ∈ ∆2 meeting the restriction
in the i-th line of (3), for 1 ≤ i ≤ 3. An easy computation shows that the
linear (or “projectivized”) version of this algorithm is defined for vectors w(0) =

(w
(0)
1 , w

(0)
2 , w

(0)
3 ) with 0 ≤ w

(0)
1 ≤ w

(0)
2 ≤ w

(0)
3 by the recurrence Minw

(n) =
w(n−1), where Min is chosen among the matrices1 0 0

0 1 0
0 1 1

 ,

1 0 0
0 0 1
0 1 1

 ,

0 1 0
0 0 1
1 0 1

 (4)

according to the magnitude of w
(n−1)
3 −w(n−1)

2 compared to w
(n−1)
1 and w

(n−1)
2 .

More precisely, we have

TBrun

(
w

(n−1)
1 /w

(n−1)
3 , w

(n−1)
2 /w

(n−1)
3

)
=
(
w

(n)
1 /w

(n)
3 , w

(n)
2 /w

(n)
3

)
.
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We associate S-adic words with this algorithm by defining the Brun substitutions

β1 :


1 7→ 1

2 7→ 23

3 7→ 3

β2 :


1 7→ 1

2 7→ 3

3 7→ 23

β3 :


1 7→ 3

2 7→ 1

3 7→ 23

(5)

whose incidence matrices coincide with the three matrices in (4) associated with
Brun’s algorithm. We prove the following result on the related S-adic words.

Theorem 19. Let SBR = {β1, β2, β3} be the set of Brun substitutions over three
letters, and consider the shift (SN, S, ν) for some shift invariant ergodic proba-
bility measure ν that assigns positive measure to each cylinder. Then (SNBR, S, ν)
satisfies the Pisot condition. Moreover, for ν-almost all sequences γ ∈ SNBR, the
S-adic shift (Xγ , S) is measure-theoretically isomorphic to a translation on the
torus T2.

This result implies that the S-adic shifts associated with Brun’s algorithm
provide a natural coding of almost all rotations on the torus T2. Indeed, by
the (weak) convergence of Brun’s algorithm for almost all (x1, x2) ∈ ∆2 (w.r.t.
to the two-dimensional Lebesgue measure; see e.g. [27]), there is a bijection Φ
defined for almost all (x1, x2) ∈ ∆2 that provides the following measure-theoretic
isomorphism for suitable measures:

∆2
TBrun−−−−→ ∆2yΦ

yΦ

SNBR
S−−−−→ SNBR

(6)

Theorem 20. For almost all t ∈ T2, there is (x1, x2) ∈ ∆2 such that the
S-adic shift (Xγ , S) with γ = Φ(x1, x2) is measure-theoretically isomorphic to
the translation by t on T2. Moreover, the words in Xγ form natural codings
of the translation by t, and the subpieces of the Rauzy fractal provide bounded
remainder sets for this translation.
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