
COBHAM’S THEOREM AND SUBSTITUTION SUBSHIFTS

FABIEN DURAND

Abstract. This lecture intends to propose a first contact with subshift dy-

namical systems through the study of a well known family: the substitution

subshifts. This will include an short introduction to topological dynamical
systems and combinatorics on words. We will focus on the unique ergodicity

of substitution subshifts and we will obtain, as a corollary, a proof of a seminal

result on automata theory: the Cobham’s theorem.

1. Introduction

The seminal theorem of Cobham has given rise during the last 40 years to a
lot of works about non-standard numeration systems and has been extended to
many contexts. The original Cobham’s theorem is concerned with integer base
numeration systems. In this paper, as a result of fifteen years of improvements, we
obtain a complete and general version for the so-called substitutive sequences.

A set E ⊂ N is p-recognizable for some p ∈ N \ {0, 1}, if the language consisting
of the p-ary expansions of the elements in E is recognizable by a finite automaton.
It is obvious to see that E is recognizable if and only if it is pk-recognizable. In
1969, A. Cobham obtained the following remarkable theorem.

Cobham’s theorem. [Cobham 1969] Let p, q ≥ 2 be two multiplicatively in-
dependent integers (i.e., pk 6= q` for all integers k, ` > 0). A set E ⊂ N is both
p-recognizable and q-recognizable if and only if E is a finite union of arithmetic
progressions.

In [Cobham 1972], Cobham made precise the structure of these p-recognizable
sets: they are exactly the images by letter-to-letter morphisms of constant-length p
substitution fixed points. He also defined the notion of p-automatic sequences: The
n-th term of the sequence is a mapping of the last reached state of the automaton
when its input is the digits of n is some given base p numeration system. Clearly
E ⊂ N is p-recognizable if and only if its characteristic sequence is p-automatic.
Automata provide a nice and easy description of p-recognizable sets whereas sub-
stitutions afford an algorithm to produce such sets.

Thanks to this characterisation, Cobham’s theorem can be reformulated in an
equivalent in terms of substitution.

Cobham’s theorem (Substitutive version). [Cobham 1969] Let p, q ≥ 2 be
two multiplicatively independent integers and A be a finite alphabet. A sequence
x ∈ AN is both p-automatic and q-automatic if and only if x = uvvv . . . for some
words u andv.

It is interesting to recall what S. Eilenberg wrote in his book [Eilenberg 1974]:
The proof is correct, long and hard. It is a challenge to find a more reasonable proof
of this fine theorem. Many other proofs have been proposed in this direction. We
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refer to the the dedicated chapter in [Allouche and Shallit 2003] for an expository
presentation.

The goal of this lecture is to present a (simple) proof of Cobham’s theorem under
some additional hypothesis using dynamical systems and more precisely: subshifts.
We will prove the following results.

Theorem 1. Let σ and τ be two primitive substitutions with dominant eigenvalues
α and β respectively. Suppose α and β are multiplicatively independent. Then,
(Xσ, T ) and (Xτ , T ) have a common factor if, and only if, this factor is periodic.

Corollary 2. Let σ and τ be two primitive substitutions with dominant eigenvalues
α and β respectively. Suppose α and β are multiplicatively independent. Then,
(Xσ, T ) and (Xτ , T ) are isomorphic if, and only if, they Xσ and Xτ are finite with
the same cardinality.

We will left as an exercise (not difficult but not so easy) to prove that Cobham’s
theorem is a corollary of Theorem 1.

2. Words, substitutions and dynamical systems

2.1. Words, sequences and morphisms. We call alphabet a finite set of ele-
ments called letters. Let A be an alphabet, a word on A is an element of the free
monöıd generated by A, denoted by A∗, i.e. a finite sequence (possibly empty) of
letters. Let x = x0x1 · · ·xn−1 be a word, its length is n and is denoted by |x|.
The empty word is denoted by ε, |ε| = 0. The set of non-empty words on A is
denoted by A+. If J = [i, j] is an interval of N = {0, 1 · · · } then xJ denotes the
word xixi+1 · · ·xj and is called a factor of x. Analogous definitions hold for open
or semi-open intervals. We say that xJ is a prefix of x when i = 0 and a suffix when
j = n − 1. If u is a factor of x, we call occurrence of u in x every integer i such
that x[i,i+|u|−1] = u. Let u and v be two words, we denote by Lu(v) the number of
occurrences of u in v.

The elements of AN are called sequences. For a sequence x = (xn;n ∈ N) =
x0x1 · · · we use the notation xJ and the terms “occurrence” and “factor” exactly
as for a word. The set of factors of length n of x is written Ln(x), and the set of
factors of x, or language of x, is represented by L(x); L(x) = ∪n∈NLn(x). The
sequence x is periodic if it is the infinite concatenation of a word v: x = vvv · · · .
It is ultimately periodic is x = uvvv · · · . A gap of a factor u of x is an integer g
which is the difference between two successive occurrences of u in x. We say that x
is uniformly recurrent if each factor has bounded gaps.

Let A, B and C be three alphabets. A morphism τ is a map from A to B∗.
Such a map induces by concatenation a map from A∗ to B∗. If τ(A) is included in
B+, it induces a map from AN to BN. All these maps are written τ also.

To a morphism τ , from A to B∗, is associated the incidence matrix Mτ =
(mi,j)i∈B,j∈A where mi,j is the number of occurrences of i in the word τ(j). To the
composition of morphisms corresponds the multiplication of matrices. For example,
let τ1 : B∗ → C∗, τ2 : A∗ → B∗ and τ3 : A∗ → C∗ be three morphisms such that
τ1 ◦ τ2 = τ3 (we will quite often forget the composition sign), then we have the
following equality: Mτ1Mτ2 = Mτ3 . In particular, if τ is a morphism from A to A∗

we have Mτn = Mn
τ for all non-negative integers n.
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2.2. Substitutions. A substitution on the alphabet A is an endomorphism σ :
A∗ → A∗ satisfying:

(1) There exists a ∈ A such that a is the first letter of σ(a);
(2) For all b ∈ A, limn→+∞ |σn(b)| = +∞.

Note that Condition (1) is not always required in the literature about substi-
tutions. We prefer to use this definition in order to avoid details that are not
necessary for the purpose of this lecture. The substitution σ can be extended by
concatenation to a map from AN to AN we continue to denote σ.

The language of σ is the set L(σ) consisting of all the words having an occur-
rence in some σn(b), n ∈ N and b ∈ A.

In some papers (see [Pansiot 1986] for example) the condition (2) is not required
to be a substitution and our definition corresponds to what Pansiot call growing
substitutions in [Pansiot 1986].

We say a square matrix M = (mij) is primitive if there exists some n such that
Mn has strictly positive entries. Whenever the matrix associated to τ is primitive
we say that τ is a primitive substitution. It is equivalent to the fact that there
exists n such that for all a and b in A, a has an occurrence in σn(b). Note that in
this case L(σ) = L(x) for all fixed points x of σ.

Let B be another alphabet, we say that a morphism φ : A∗ → B∗ is a letter to
letter morphism when φ(A) is a subset of B. Then the sequence φ(x) is called
substitutive, and primitive substitutive if τ is primitive.

2.3. Dynamical systems and subshifts. By a dynamical system we mean a
pair (X,S) where X is a compact metric space and S a continuous map from X to
itself. We say that it is a Cantor system if X is a Cantor space. That is, X has a
countable basis of its topology which consists of closed and open sets and does not
have isolated points. The system (X,S) is minimal whenever X and the empty
set are the only S-invariant closed subsets of X. We say that a minimal system
(X,S) is periodic whenever X is finite. We say it is p-periodic if #(X) = p.

Let (X,S) and (Y, T ) be two dynamical systems. We say that (Y, T ) is a factor
of (X,S) if there is a continuous and onto map φ : X → Y such that φ ◦ S = T ◦ φ
(φ is called factor map). If φ is one-to-one we say that φ is an isomorphism and
that (X,S) and (Y, T ) are isomorphic.

In this paper we deal with Cantor systems called subshifts. Let A be an al-
phabet. We endow AN with the infinite product of the discrete topologies. It is a
metrizable topology, a metric being given by

d(x, y) =
1

2n
with n = inf{|k|; xk 6= yk},

where x = (xn;n ∈ N) and y = (yn;n ∈ N) are two elements of AN. By a subshift
on A we shall mean a pair (X,T|X) where X is a closed T -invariant (T (X) = X)

subset of AN and T is the shift transformation

T : AN → AN

(xn;n ∈ N) 7→ (xn+1;n ∈ N).

We call language of X the set L(X) = {x[i,j]; x ∈ X, i ≤ j}. Let u be a word of A∗.
The set

[u]X = {x ∈ X; x[0,|u|−1] = u}
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is called cylinder. The family of these sets is a base of the induced topology on
X. When it will not create confusion we will write [u] and T instead of [u]X and
T|X .

Let x be a sequence on A and Ω(x) be the set {y ∈ AN; y[i,j] ∈ L(x),∀ [i, j] ⊂ N}.
It is clear that (Ω(x), T ) is a subshift. We say that (Ω(x), T ) is the subshift generated

by x. Notice that Ω(x) = {Tnx;n ∈ N}. Let (X,T ) be a subshift on A, the following
are equivalent:

(1) (X,T ) is minimal.
(2) For all x ∈ X we have X = Ω(x).
(3) For all x ∈ X we have L(X) = L(x).

We also have that (Ω(x), T ) is minimal if and only if x is uniformly recurrent.
Note that if (Y, T ) is another subshift then, L(X) = L(Y ) if and only if X = Y .

2.4. Substitution subshifts. Let us start with an important result for this lec-
ture.

Proposition 3. Let σ be a substitution. The sequence (σn(aa · · · ))n∈N converges
in AN to a sequence x. The substitution σ is continuous on AN and x is a fixed
point of σ, i.e σ(x) = x.

Proposition 4. Let σ be a primitive substitution. All the fixed points of σ are
uniformly recurrent and generate the same minimal subshift, we call it the substi-
tution subshift generated by σ and we denote it (Xσ, T ).

A subshift generated by a substitutive sequence is called substitutive subshift. In
fact there is no fundamental difference between these two notions of subshifts as
we have the following result.

Proposition 5. Let (X,T ) be a minimal subshift. The following statements are
equivalent.

(1) (X,T ) is isomorphic to a primitive substitution subshift.
(2) (X,T ) is isomorphic to a minimal substitutive subshift.
(3) (X,T ) is isomorphic to a substitution subshift.

There is another way to generate subshifts. Let L be a language on the alphabet
A and define XL ⊂ AN to be the set of sequences x = (xn)n∈N such that each word
of L(x) appears in a word of L. The pair (XL, T ) is a subshift and we call it the
subshift generated by L.

Proposition 6. If σ is a primitive substitution, then Xσ = XL where L =
{σn(a); a ∈ A,n ∈ N}.

It is easy to show that if x is an ultimately periodic sequence and (Ω(x), T ) is
minimal, then x is periodic.

2.5. Return words and linearly recurrent sequences. For the rest of the
section x is a uniformly recurrent sequence on the alphabet A and (X,T ) is the
minimal subshift it generates. We recall that all sequences in X are uniformly
recurrent. Let u be a non-empty word of L(X).

A word w on A is a return word to u in x if there exist two consecutive
occurrences j, k of u in x such that w = x[j,k). The set of return words to u is

denoted by Ru(x). It is immediate to check that a word w ∈ A+ is a return word
if and only if:
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(1) uwu ∈ L(x) (i.e. uwu is a factor of x);
(2) u is a prefix of wu;
(3) the word wu has only two occurrences of u.

Let us make the following observations.

(1) As x is uniformly recurrent, the difference between two consecutive occur-
rences of u in x is bounded, and the set Ru(x) of return words to u is
finite.

(2) The previous statement (2) cannot be simplified: it is not equivalent to u
is a prefix of w. For example, if aaa is a factor of x then the word a is a
return word to aa.

(3) From this characterization, it follows that the set of return words to u is
the same for all y ∈ X, hence we set Ru(X) = Ru(x).

If it is clear from the context, we write Ru instead of Ru(x).
We say that a sequence x on a finite alphabet is linearly recurrent (for the

constant K ∈ N) if it is recurrent and if, for every word u of x and all w ∈ Ru it
holds

|w| ≤ K|u|.

Proposition 7. Let x ∈ AN be an non-periodic linearly recurrent sequence for the
constant K. Then:

(1) The number of distinct factors of length n of x is less or equal to Kn.
(2) x is (K + 1)-power free (i.e. uK+1 ∈ L(x) if and only if u = ε).
(3) For all u ∈ L(x) and for all w ∈ Ru we have (1/K)|u| < |w|.
(4) For all u ∈ L(x), #Ru ≤ K(K + 1)2.

Proof. We start with a remark. Let n be a positive integer and u ∈ L(x) a word of
length (K + 1)n − 1. Let v ∈ L(x) be a word of length n. The difference between
two successive occurrences of v is smaller than Kn, consequently u has at least one
occurrence of v. We have proved that: For each n, every words of length n has at
least one occurrence in each word of length (K + 1)n − 1. From this remark we
deduce (1).

Let u ∈ L(x) be a word such that uK+1 ∈ L(x). Each factor of x of length |u|
occurs in uK+1. But in uK+1 occurs at most |u| distinct factors of length |u| of x.
This contradicts the non-periodicity of x. (We recall that if for some n a sequence
y ∈ AN has at most n different words of length n, then it is ultimately periodic, see
[Morse and Hedlund 1938].)

Assume there exist u ∈ L(x) and w ∈ Ru such that |u|/K ≥ |w|. The word w is
a return word to u therefore u is a prefix of wu. We deduce that wK is a prefix of
u. Hence wK+1 belongs to L(x) because wu belongs to L(x). Consequently w = ε
and (3) is proved.

Let u be a factor of x and v ∈ L(x) be a word of length (K + 1)2|u|. Each word
of length (K+ 1)|u| occurs in v, hence each return word to u occurs in v. It follows
from (3) that in v will occur at most K(K + 1)2|u|/|u| = K(K + 1)2 return words
to u, which proves (4). �

We say (X,T ) is a linearly recurrent subshift if it is a minimal subshift that
contains a linearly recurrent sequence. It is easy to check that, then, all elements
of (X,T ) are linearly recurrent.
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3. Some useful properties of the substitutions: linear recurrence
and existence of word’s frequencies

In this section we develop the tools we will use to prove Theorem 1 and Corollary
2. For a substitution τ : A∗ → A∗, we set

|σ| = max{|σ(a)|; a ∈ A} and 〈σ〉 = min{|σ(a)|; a ∈ A}.

3.1. Desubstitution. Let σ be a substitution and (X,T ) be the subshift it gen-
erates. Let u be a word of the language L(X). From Proposition 6, v is a factor
of some σn(a). Thus there exist u1, v0 and w0 belonging to L(X), such that the
length of v0 and w0 are less than |σ| and v = v0σ(u1)w0. Proceeding like this with
u1 and so on one obtains there exist n, and, words un, vi (0 ≤ i ≤ n − 1) and wi
(0 ≤ i ≤ n− 1) such that

(1) |un|, |vi| and |wi|, 0 ≤ i ≤ n− 1 are less that where |σ|;
(2) vn is non-empty;
(3) u = v0σ(v1) · · ·σn−1(vn−1)σn(un)σn−1(wn−1) · · · (w1)w0.

Observe that the vi and the wi can be empty.

3.2. Linear recurrence of primitive substitutive sequences. In this section
we show that all fixed points of primitive substitutions are linearly recurrent.

Lemma 8. Let σ be a primitive substitution. There exists a constant C such that

|σk| ≤ C〈σk〉.
Moreover, if the incidence matrix of σ has positive entries then one can take C =
|σ|.

Proof. For all k we choose some letters ak and bk such that |σk(ak)| = 〈σk〉 and
|σk(bk)| = |σk|. By primitivity there exists k0 such that for all a, b ∈ A the letter b
has an occurrence in the word σk0(a). We set C = |σk0(bk0)|. For k ≥ k0 we have

|σk| =
∣∣σk(bk)

∣∣ =
∣∣σk0 (σk−k0(bk)

)∣∣ ≤ C ∣∣σk−k0(bk)
∣∣ ≤ C ∣∣σk(ak)

∣∣ = C〈σk〉.
�

Proposition 9. All primitive substitutive sequences, and the subshifts they gener-
ate, are linearly recurrent.

Proof. It suffices to prove it for fixed points of primitive substitutions. Let σ be a
primitive substitution and x one of its fixed points. Without loss of generality one
can suppose the incidence matrix of σ has positive entries. In virtue of Lemma 8
one has |σk| ≤ |σ|〈σk〉 for all k.

For all k we choose some letters ak and bk such that |σk(ak)| = 〈σk〉 and
|σk(bk)| = |σk|. By primitivity there exists k0 such that for all a, b ∈ A the letter b
has an occurrence in the word σk0(a). We set C = |σk0(bk0)|. For k ≥ k0 we have

|σk| =
∣∣σk(bk)

∣∣ =
∣∣σk0 (σk−k0(bk)

)∣∣ ≤ C ∣∣σk−k0(bk)
∣∣ ≤ C ∣∣σk(ak)

∣∣ = C〈σk〉.

Let u be a word of L(x) and w be a return word to u. Let k be the smallest
integer such that Ik ≥ |u|. The choice of k entails that there exists a word ab ∈ L(x)
of length 2 such that u occurs in σk(ab). Let R be the largest difference between
two successive occurrences of a word of length 2 of L(σ). It follows
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|w| ≤ R|σk| ≤ RC〈σk〉 ≤ RCS1〈σk−1〉 ≤ RC|σ||u| .
�

When the substitution σ is primitive we will also say that σ is linearly recurrent
for some constant.

3.3. Perron Theorem and frequencies of the letters. The following well-
known theorem is fundamental to prove the existence and compute the frequen-
cies of the words in fixed points of substitutions. The proof can be found in
[Horn and Johnson 1990] or [Lind and Marcus 1995].

Theorem 10. Let M be a d× d primitive matrix. Then :

(1) The matrix M has a positive eigenvalue θ which is strictly greater than the
modulus of any other eigenvalue;

(2) The eigenvalue θ is algebraically simple;
(3) To this eigenvalue corresponds an eigenvector with positive entries.
(4) There exist 0 < r < θ and C such that for all i, j ∈ {1, . . . , d} and all n ∈ N

we have ∣∣Mn
ij − riljθn

∣∣ ≤ Crn,
where (r1, . . . , rA) and (l1, . . . , lA) are respectively the unique right and

left eigenvectors satisfying∑
a∈A

ra = 1 and
∑
a∈A

rala = 1.(1)

Let σ : A∗ → A∗ be a primitive substitution, M its matrix and x one of its
fixed points. The eigenvalue θ of the previous theorem will be called the Perron
eigenvalue of M or σ. These real numbers are called Perron numbers. We take
the notations of the previous theorem.

For a word u ∈ L(x) we call frequency of u in L(x) the limit (when it exists)

freqσ(u) = lim
|v|→∞,v∈L(x)

1

|v|
#
{

0 ≤ i ≤ |v| − |u| − 1;u = v[i,i+|u|−1]
}
.(2)

We recall that for all n and all a, b in A we have |σn(b)|a = (Mn)a,b. Conse-
quently from Perron theorem we obtain, for all n ∈ N,

||σn(b)|a − ralbθn| ≤Crn, thus(3)

||σn(b)| − lbθn| ≤(#A)Crn and(4)

||σn(b)|a − ra|σn(b)|| ≤C(1 + #A)rn.(5)

We set C ′ = C(1 + #A). We fix a ∈ A. Now we prove that freqσ(a) exists. Let
v ∈ L(σ). There exist n, and, words vi (0 ≤ i ≤ n) and wi (0 ≤ i ≤ n) such that

(1) |vi| ≤ L and |wi| ≤ L for 0 ≤ i ≤ n where L = maxb∈A |σ(b)|;
(2) vn is non-empty;
(3) v = v0σ(v1) · · ·σn−1(vn−1)σn(vn)σn−1(wn−1) · · · (w1)w0.
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Moreover from (4) there exists a constant C ′′ > 0 such that |σn(u)| ≥ C ′′|u|θn
for all u ∈ L(σ). Hence

||v|a − ra|v|| ≤ 2C ′
rn+1 − 1

r − 1
≤ C ′′′|v|α,

for some constants C ′′, C ′′′, where α = log r/ log θ < 1. This means that freqσ(a)
exists and is equal to ra.

3.4. Substitutions of the words of length n and frequencies of words. Here
σ : A∗ → A∗ is a primitive substitution. In this section we prove the frequency of
words exists for primitive substitutions. We use the previous subsection and the
following substitutions.

Let k ≥ 1. We consider Ak = {(u);u ∈ L(σ), |u| = k} as an alphabet, the
map πk : A∗k → A∗ defined, for all (u) = (u1 . . . uk) ∈ Ak, by πk((u)) = u1,
and the substitution σk : A∗k → A∗k in the following way: For (u) ∈ Ak with
σ(u) = v = v1 . . . vm and p = |σ(u1)|, we put

σk((u)) = (v[1,k])(v[2,k+1]) · · · (v[p,p+k−1]).
In other words, σk(u) consists of the ordered list of the first |σ(u1)| factors of

length k of σ(u). Let x = x0x1 · · · be a fixed point of σ. Then, one can prove by
induction that

(σk)n((x[0,k−1])) = (x[0,k−1])(x[1,k]) · · · (x[|σn(x0)|−1,|σn(x0)|+k−1]).(6)

Notice that, for every n > 1, (σn)k is associated to σn in the same way as σk is
associated to σ: (σn)k((u)) consists of the ordered list of the first |σn(u1)| factors
of length k of σn(u). In particular we have:

|σnk ((u))| = |σn(u1)|.(7)

Thus from (6) we clearly see that (σk)n = (σk)n. For sake of simplicity we prefer
to write σnk .

If n is large enough, every v ∈ L(σ) of length k is a factor of σn(a) for every
a ∈ A; Thus, (v) ∈ Ak occurs in σnk ((u)) for every (u) ∈ Ak. We proved that σk is
primitive.

Let w be a word of length n > 0 over the alphabet Ak. From the definition of
L(σ) and L(σk) it can be checked that : w ∈ L(σk) if and only if there exists a
word v ∈ L(σ) of length n + k − 1 such that w = (v[1,k])(v[2,k+1]) . . . (v[n,n+k−1]).
Clearly, given (u) ∈ Ak, the number of occurrences of the symbol (u) in w is equal
to the number of occurrences of u in v. Consequently

freqσ(u) = freqσk((u)).(8)

Finally applying the results of the previous subsection to σk for all k we obtain
the following result.

Proposition 11. For all u ∈ L(σ) there exist constants freqσ(u), D and α < 1
such that for all v ∈ L(σ) of length greater than |u| we have

||v|u − freqσ(u) (|v| − |u|+ 1)| ≤ D (|v| − |u|+ 1)
α
.

Corollary 12. The frequency of u exists for all u ∈ L(σ).
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In [Holton and Zamboni 1999] is proved the following theorem which is central
in the present paper. Below we give a different proof using Proposition 7.

Theorem 13. Let θ be the Perron eigenvalue of σ. There exists a finite set F ⊂ R
such that for all n ∈ N there exists k ∈ N satisfying

{freqσ(u);u ∈ L(σ), |u| = n} ⊂
{
sθ−k; s ∈ F

}
.

Proof. We suppose σ is linearly recurrent for the constant K. Let θ2 be the Perron
eigenvalue of σ2. From (7) and Perron Theorem we deduce that θ2 = θ. Let M2 be
the incidence matrix of σ2. From (8) we know that freqσ(u) = freqσ2

((u)) for all
u ∈ A2. Subsection 3.3 and Theorem 10 imply that (freqσ2

((u)); (u) ∈ A2) is the
unique right eigenvector of M2 (for the eigenvalue θ2) with

∑
(u)∈A2

freqσ2
((u)) = 1.

Let C be the constant defined in Lemma 8. Let u ∈ L(σ) be a word of length n
and k an integer satisfying such that

〈σk−1〉 ≤ |u| = n ≤ 〈σk〉

Let B be the set of words (ab) ∈ A2 such that u has an occurrence in σk(ab). The
choice of k implies this set is non-empty. Let (ab) ∈ B and M = max{|σ(c)|, c ∈ A}.
From Proposition 7 it follows that

|σk(ab)|u ≤
|σk(ab)|
|u|/K

≤ 2K|σ|C〈σk−1〉
|u|

≤ 2K|σ|C.

Moreover from (4) we have that

lim
m→∞

|σm+k(a)|
|σm(a)|

= θk

and from Proposition 11, for all c ∈ A,

freqσ(u) = lim
m→∞

|σm+k(c)|u
|σm+k(c)|

.

Let a′b′ be the last word of length two of σm(c). Then,

|σm+k(c)|u
|σm+k(c)|

=

∑
ab∈A2

(
|σk(ab)|u − |σk(b)|u

)
|σm(c)|ab + |σk(b′)|u

|σm+k(c)|

=
∑
ab∈A2

(
|σk(ab)|u − |σk(b)|u

) |σm(c)|ab
|σm(c)|

|σm(c)|
|σm+k(c)|

+
|σk(b′)|u
|σm+k(c)|

−→m→∞
∑
ab∈A2

(
|σk(ab)|u − |σk(b)|u

)
freqσ(ab)θ−k.

Consequently, it suffices to take

F =

{ ∑
ab∈A2

jabfreqσ(ab); jab ∈ [0, 2K|σ|C] ∩ N, ab ∈ A2

}
which is a finite set. �
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4. Cobham’s theorem for minimal substitutive systems

In this section we prove Theorem 1 and Corollary 2.

4.1. Preimages of factor maps of LR subshifts. Let φ be a factor map from
the subshift (X,T ) on the alphabet A onto the subshift (Y, T ) on the alphabet B.
If there exists a r-block map f : A2r+1 → B such that (φ(x))i = f(x[i−r,i+r]) for
all i ∈ N and x ∈ X, we shall say that f is a block map associated to φ, that f
defines φ and that φ is a sliding block code. The theorem of Curtis-Hedlund-
Lyndon (Theorem 6.2.9 in [Lind and Marcus 1995]) asserts that factor maps are
sliding block codes.

Theorem 14 (Curtis-Hedlund-Lyndon theorem). Let φ be a factor map between
two subshifts. Then, there exists a block map f associated to φ.

Proof. We left it as an exercise. �

If u = u0u1 · · ·un−1 is a word of length n ≥ 2r + 1 we define f(u) by (f(u))i =
f(u[i,i+2r]), i ∈ {0, 1, · · · , n− 2r − 1}.

Let C denote the alphabet A2r+1 and Z = {((x[−r+i,r+i]); i ∈ N) ∈ CN; (xn;n ∈
N) ∈ X}. It is easy to check that the subshift (Z, T ) is isomorphic to (X,T ) and
that f induces a 0-block map from C onto B which defines a factor map from (Z, T )
onto (Y, T ).

The next lemma was first proved in [Durand 2000].

Lemma 15. Let (X,T ) be a non-periodic LR subshift (for the constant K) and
(Y, T ) be a non-periodic subshift factor of (X,T ). Then (Y, T ) is LR. Moreover,
there exists n1 such that: For all u ∈ L(Y ) with |u| ≥ n1 we have

(1) |u|/2K ≤ |w| ≤ 2K|u| for all w ∈ Ru(Y ) ;
(2) #(Ru(Y )) ≤ 2K(2K + 1)2.

Proof. We denote by A the alphabet of X and by B the alphabet of Y . Let
φ : (X,T )→ (Y, T ) be a factor map. Let f : A2r+1 → B be a block map associated
to φ.

Let u be a word of L(Y ) and v ∈ L(X) be such that f(u) = v. We have |u| =
|v|−2r. If w is a return word to u then |w| ≤ max{|s|; s ∈ Rv} ≤ K|v| ≤ K(|u|+2r).
Then, the subshift (Y, T ) is linearly recurrent for the constant K(2r+1). Moreover:
For all u ∈ L(Y ) such that |u| ≥ n1 = 2r, and for all w ∈ Ru, |w| ≤ 2K|u|. To
obtain the other inequality it suffices to proceed as in the proof of Proposition 7.

Let u ∈ L(Y ) with |u| ≥ n1 and v ∈ L(Y ) be a word of length (2K + 1)2|u|.
Each word of length (2K + 1)|u| occurs in v, hence each return word to u occurs
in v. It follows from the previous assertion that in v occurs at the most 2K(2K +
1)2|u|/|u| = 2K(2K + 1)2 return words to u. �

Proposition 16. Let (X,T ) be a non-periodic LR subshift (for the constant K).
Let φ : (X,T )→ (Y, T ) be a factor map such that (Y, T ) is a non-periodic subshift
and f : A2r+1 → B be a r-block map defining φ. Then there exists n0 such that for
all u ∈ Y , with |u| ≥ n0, we have

#(f−1({u})) ≤ 4K(K + 1).
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Proof. Let n1 be the integer given by Lemma 15. We set n0 = max(2r + 1, n1).
Let u ∈ L(Y ) such that |u| ≥ n0. The difference between two distinct occurrences
of elements of f−1({u}) is greater than |u|/2K. Moreover f−1({u}) is included in
L(X)∩A|u|+2r and each word of length (K+ 1)(|u|+ 2r) has an occurrence of each
word of L(X) ∩A|u|+2r. Therefore

#(f−1({u})) ≤ (K + 1)(|u|+ 2r)

|u|/2K
≤ 4K(K + 1).

This completes the proof. �

4.2. Frequencies in the factors. Let σ be a primitive substitution with dominant
eigenvalue α and linearly recurrent constant K, and, (Y, T ) a non-periodic factor
of (Xσ, T ). Let φ : Xσ → Y be a factor map and f be a r-block map that defines
φ. From Theorem 13 we know there exists a finite set Fσ ⊂ R such that for all n
there exists k ∈ N satisfying

{freqσ(v); v ∈ L(Xσ), |v| = n} ⊂
{
sθk; s ∈ Fσ

}
.(9)

Let u ∈ L(Y ), |u| = m, and set f−1({u}) = {v1, . . . , vl} ⊂ L|u|+2r(Xσ) with
l ≤ 4K(K + 1) (Proposition 16). Let k be as in (9) for n = |u|+ 2r. Let y ∈ Y and
x ∈ Xσ such that φ(x) = y. We remark that

lim
|v|→∞,v∈L(Y )

1

|v|
#
{

0 ≤ i ≤ |v| − |u|;u = v[i,i+|u|−1]
}

exists and is equal to

lim
|w|→∞,w∈L(X)

1

|w|
#
{

0 ≤ i ≤ |w| − |u|+ 2r;w[i,i+|u|+2r−1] ∈ {v1, . . . , vl}
}

We denote it freqY (u). Moreover,

freqY (u) =

l∑
i=1

freqXσ (vi) ∈
{
s′θk; s′ ∈ F ′σ

}
,

where F ′σ is the finite set
{∑4K(K+1)

i=1 fi; fi ∈ Fσ, 1 ≤ i ≤ 4K(K + 1)
}

. We pro-

ved:

Theorem 17. Let θ be the Perron eigenvalue of the primitive substitution σ. There
exists a finite set F ⊂ R such that for all non-periodic subshift factor (Y, T ) of
(Xσ, T ), and all n ∈ N there exists k ∈ N satisfying

{freqY (u);u ∈ L(Y ), |u| = n} ⊂
{
fθk; f ∈ F

}
.

4.3. Proof of Theorem 1. From Theorem 17 we know there exist two finite sets
Fσ and Fτ such that for all n ∈ N there exists k, k′ ∈ N satisfying

{freqY (u);u ∈ L(Y ), |u| = n} ⊂
{
sαk; s ∈ Sσ

}
∩
{
sβk

′
; s ∈ Sτ

}
.

Using Statement (1) of Lemma 15 we have that freqY (u) ≤ 2K/|u| for all u ∈
L(Y ). Then, freqY (u) tends to 0 when |u| goes to infinity. Consequently, there
exist u, v ∈ L(Y ), s ∈ Sσ, t ∈ Sτ , k, k′ ∈ N, k 6= k′, and l, l′ ∈ N, l 6= l′, such that
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sαk = freqY (u) = tβl and sαk
′

= freqY (v) = tβl
′
.

We obtain that αk
′−k = βl

′−l, which ends the proof.

5. Measure theoretical dynamical systems and ergodicity

The goal of this section is to translate some results we obtained on frequencies
of words into results on shift invariant measures. To this end we need to enlarge
the framework to measurable dynamical systems.

A measurable dynamical system is a quadruple (X,B, µ, T ), where X is a
space endowed with a σ-algebra B, a probability measure µ and measurable map
T : X → X that preserves the measure µ, i.e., µ(T−1B) = µ(B) for any B ∈ B. We
also say that µ is T -invariant. The measure µ is called ergodic if any T -invariant
measurable set has measure 0 or 1. If (X,S) admits a unique measure preserved
by S, then the system is said uniquely ergodic.

It is well-known that a dynamical system (X,T ) endowed with the Borel σ-
algebra always admits a probability measure µ preserved by the map T , and then
form a measurable dynamical system.

Theorem 18 (Krylov-Bogolioubov theorem). Let (X,T ) be a dynamical system.
There exists at least one Borel probability measure on X preserved by T .

Proof. Let M(X) be the set of Borel probability measures on X endowed with the
weak-star topology. Fix an arbitrary point of X and consider a weak-star cluster
point µ in M(X) of the sequence of probability measures (µN )N :

µN =
1

N

N−1∑
n=0

δTnx,

where δy stands for the Dirac measure at y. Clearly, µ is a probability measure
preserving which is T -invariant. �

The most important result for measurable dynamical system is the Ergodic
theorem. We refer to [Queffélec 2010] or [Petersen 1983] for more details.

Theorem 19 (Birkhoff Ergodic Theorem). Let (X,B, µ, T ) be a measurable dy-
namical system. Let f ∈ L1(X). Then the sequence(

1

N

N−1∑
n=0

f ◦ Tn
)
N≥0

converges µ-almost everywhere to a function f∗ ∈ L1(X). One has f∗ ◦ T = f∗

µ-almost everywhere and
∫
X
f∗dµ =

∫
X
fdµ. Furthermore, if T is ergodic, then

f∗ is µ-almost everywhere constant and for all f belonging to L1(X) on has, for
µ-almost every x,

lim
N→+∞

1

N

N−1∑
n=0

f ◦ Tn(x) =

∫
X

fdµ.

The Ergodic Theorem applied to characteristic χC functions of cylinders C can
be restated in terms of frequencies. Let us defined for a subshift X, when it exists,
the frequencies of u ∈ L(X) in the sequence x:

freqX(x, u) = lim
n→∞

1

n
#
{

0 ≤ i ≤ n− |u| − 1;u = x[i,i+|u|−1]
}
.
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We say (X,S) has uniform frequencies whenever freqX(x, u) exists for all u
and x We have seen in Corollary 12 primitive substitution subshifts have uniform
frequencies. Below we show that uniform frequencies property characterize unique
ergodicity following the presentation of S. Ferenczi and T. Monteil in their Chapter
7 in [Durand 2010].

Proposition 20. Let (X,S) be a subshift and µ be an ergodic measure on (X,S).
Then for µ-almost every x ∈ X, and for any word w ∈ L(X), the frequency
freqX(x, v) exists and is equal to µ([w]).

Proof. It suffices to apply the Ergodic Theorem to the characteristic functions of
cylinder sets f = χ[w] noticing that

|x[0,N−1]|w =

N−1∑
n=0

χ[w] ◦ Sn(x).

�

Proposition 21. Let (X,T ) be a uniquely ergodic dynamical system whose unique
invariant measure is denoted by µ. Let f : X → R be a continuous function. Then,

the sequence of functions ( 1
N

∑N−1
n=0 f ◦Tn)N≥0 converges uniformly to the function

with constant value
∫
X
fdµ.

Proof. We proceed by contradiction: there exist ε > 0, a sequence (xn)n∈N and a
strictly increasing integer sequence α such that for any integer n:

1

α(n)

α(n)−1∑
k=0

f(T k(xα(n))−
∫
X

fdµ ≥ ε.

Let ν be a cluster point of the sequence of probability measures (νn) defined by

νn =
1

α(n)

α(n)−1∑
k=0

δTk(xα(n)).

The measure ν is T -invariant and satisfies∫
X

fdν −
∫
X

fdµ ≥ ε.

This contradicts the uniqueness of µ. �

Corollary 22. Subshifts have uniform frequencies if and only if they are uniquely
ergodic.

Proof. This is a consequence of propositions 21 and 20 �

6. Exercises

6.1. Exercises of Section 1.

Exercise 1. Show that E ⊂ N is a finite union of arithmetic progressions if and
only if its characteristic sequence (xn)n (xn = 1 if n ∈ E and0 otherwise) is equal
to uvvv · · · for some words u, v.
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6.2. Exercises of Section 2.

Exercise 2. Let τ1 : B∗ → C∗, τ2 : A∗ → B∗ and τ3 : A∗ → C∗ be three morphisms
such that τ1 ◦ τ2 = τ3, then we have the following equality: Mτ1Mτ2 = Mτ3 .

Exercise 3. Show that the triadic Cantor space is homeomorphic to {0, 1}N.

Exercise 4. Show that any compact set X having a countable basis of its topol-
ogy which consists of closed and open sets and does not have isolated points is
homeomorphic to {0, 1}N.

Exercise 5. Show that the distance given by

d(x, y) =
1

2n
with n = inf{|k|; xk 6= yk},

where x = (xn;n ∈ N) and y = (yn;n ∈ N) are two elements of AN, defines the
topology of AN.

Exercise 6. Show that the shift transformation is continuous.

Exercise 7. Let (X,S) be a dynamical system. Show that there exists a minimal
subsystem, that is a dynamical system (Y, S/Y ) where Y is a compact subset of X
(Hint: use Zorn’s Lemma).

Exercise 8. Let x be a sequence on A and Ω(x) be the set {y ∈ AN; y[i,j] ∈
L(x),∀ [i, j] ⊂ N}. Show that (Ω(x), T ) is a subshift.

Exercise 9. Let (X,T ) be a subshift on the alphabet A, the following are equiva-
lent:

(1) (X,T ) is minimal.
(2) For all x ∈ X we have X = Ω(x).
(3) For all x ∈ X we have L(X) = L(x).

Exercise 10. Show that (Ω(x), T ) is minimal if and only if x is uniformly recurrent.

Exercise 11. Let (X,T ) and (Y, T ) be two subshifts. Show that L(X) = L(Y ) if
and only if X = Y .

Exercise 12. Prove propositions 3, 4 and 6

Exercise 13. Let x be a uniformly recurrent. Show the following.

(1) The difference between two consecutive occurrences of u in x is bounded,
and the set Ru(x) of return words to u is finite.

(2) The set of return words to u is the same for all y ∈ Ω(x).

Exercise 14. Let x be a linearly recurrent sequence. Show that all y ∈ Ω(x) are
linearly recurrent.

Exercise 15. Let x be a fixed point of a primitive substitution on the alphabet A.
Let φ : A∗ → B∗ be a morphism. Show that φ(x) is linearly recurrent.

Exercise 16. Show that the primitive substitution σ defined by 0 7→ 0010 and
1 7→ 1 has two fixed points and that both are linearly recurrent.
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6.3. Exercises of Section 3.

Exercise 17. Show that the dominant eigenvalue of a primitive substitution σ of
constant length, that is |σ| = 〈σ〉, is |σ|.

Exercise 18. Compute the frequencies of the words of length 1, 2 and 3 of the
substitutions

σ : 0 7→ 01 τ : 0 7→ 01 ξ : 0 7→ 012
1 7→ 10 1 7→ 0 1 7→ 010

2 7→ 221.

Exercise 19. Let σ be a primitive substitution. Express matricial relations be-
tween the incidence matrices of σ and its substitutions of the words of length n.
Deduce some properties on the eigenvalues.

6.4. Exercises of Section 4.

Exercise 20. Prove the Curtis-Hedlund-Lyndon theorem

Exercise 21. Consider the two subshifts generated by the following (non primitive)
substitutions:

σ : 0 7→ 0121 ξ : 0 7→ 012
1 7→ 1112 1 7→ 112
1 7→ 2111 2 7→ 211.

Show they are non isomorphic.

Exercise 22. Prove the substitutive version of Cobham’s theorem in the primitive
case.

Exercise 23. Prove the substitutive version of Cobham’s theorem.

6.5. Exercises of Section 5.

Exercise 24. Let (X,S) be a primitive substitution subshift. Prove that freqX(x, u)
exists for all x ∈ X and u ∈ L(X) and is independent of x.
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