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Part 1

Introduction

1.1 Preface

In these notes we discuss several quantitative definitions of the broad and vague notion of complexity,
especially from the viewpoint of dynamical systems, focusing on transformations on the Cantor set, in
particular shift dynamical systems. After this introduction, the second part reviews dynamical entropy,
the asymptotic exponential growth rate of the number of patterns or available information, uncertainty,
or randomness in a system as the window size grows. The third part treats the more precise complexity
function, which counts the actual number of patterns of each size, and then several of its variations. In
the fourth part we present a new quantity that measures the balance within a system between coherent
action of the whole and independence of its parts. There is a vast literature on these matters, new
papers full of new ideas are appearing all the time, and there are plenty of questions to be asked and
investigated with a variety of approaches. (Our list of references is in no way complete.) Some of the
attractiveness of the subject is due to the many kinds of mathematics that it involves: combinatorics,
number theory, probability, and real analysis, as well as dynamics. For general background and useful
surveys, see for example [4, 19,75,78,133,137,152,181].

Parts of these notes are drawn from earlier writings by the author or from theses of his students
Kathleen Carroll and Benjamin Wilson (see also [45, 153]). Thanks to Valérie Berthé, Francesco Dolce,
and Bryna Kra, among others, for pointing out references. I thank the participants, organizers, and
supporters of the CIMPA Research School cantorsalta2015, Dynamics on Cantor Sets, for the opportunity
to participate and the incentive to produce these notes.

1.2 Complexity and entropy

An elementary question about any phenomenon under observation is, how many possibilities are there.
A system that can be in one of a large but finite number of states may be thought to be more complex
than one that has a choice among only a few. Then consider a system that changes state from time
to time, and suppose we note the state of the system at each time. How many possible histories, or
trajectories, can there be in a time interval of fixed length? This is the complexity function, and it
provides a quantitative way to distinguish relatively simple systems (for example periodic motions) from
more complicated (for example “chaotic”) ones. In systems with a lot of freedom of motion the number
of possible histories may grow very rapidly as the length of time it is observed increases. The exponential
growth rate of the number of histories is the entropy. While it may seem to be a very crude measure of
the complexity of a system, entropy has turned out to be the single most important and useful number
that one can attach to a dynamical system.

1.3 Some definitions and notation

A topological dynamical system is a pair (X,T ), where X is a compact Hausdorff space (usually metric)
and T : X → X is a continuous mapping. In these notes X is usually the Cantor set, often in a specific
representation as a subshift or as the set of infinite paths starting at the root in a Bratteli diagram—see
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6 Part 1. Introduction

below. A measure-preserving system (X,B, T, µ) consists of a measure space (X,B, µ) and a measure-
preserving transformation T : X → X. Often no generality is lost in assuming that (X,B, µ) is the
Lebesgue measure space of the unit interval, and in any case usually we assume that µ(X) = 1. A
standard measure space is one that is measure-theoretically isomorphic to a Borel subset of a complete
metric space with its σ-algebra of Borel sets and a Borel measure. T is assumed to be defined and
one-to-one a.e., with T−1B ⊂ B and µT−1 = µ. The system is called ergodic if for every invariant
measurable set (every B ∈ B satisfying µ(B4T−1B) = 0) either µ(B) = 0 or µ(X \B) = 0.

A homomorphism or factor mapping between topological dynamical systems (X,T ) and (Y, S) is a
continuous onto map φ : X → Y such that φT = Sφ. We say Y is a factor of X, and X is an extension
of Y. If φ is also one-to-one, then (X,T ) and (Y,M) are topologically conjugate and φ is a topological
conjugacy. A homomorphism or factor mapping between measure-preserving systems (X,B, T, µ) and
(Y,B, S, ν) is a map φ : X → Y such that φ−1C ⊂ B, φT = Sφ a.e., and µφ−1 = ν. If in addition φ is
one-to-one a.e., equivalently φ−1C = B up to sets of measure 0, then φ is an isomorphism.

We focus in these notes especially on topological dynamical systems which are shift dynamical systems.
Let A be a finite set called an alphabet. The elements of this set are letters and shall be denoted by
digits. A sequence is a one-sided infinite string of letters and a bisequence is an infinite string of letters
that extends in two directions. The full A-shift, Σ(A), is the collection of all bisequences of symbols
from A. If A has n elements,

Σ(A) = Σn = AZ = {x = (xi)i∈Z | xi ∈ A for all i ∈ Z}.

The one-sided full A-shift is the collection of all infinite sequences of symbols from A and is denoted

Σ+(A) = Σ+
n = AN = {x = (xi)i∈N | xi ∈ A for all i ∈ N}.

We also define the shift transformation σ : Σ(A)→ Σ(A) and Σ+(A)→ Σ+(A) by

(σx)i = xi+1 for all i.

The pair (Σn, σ) is called the n-shift dynamical system.

We give A the discrete topology and Σ(A) and Σ+(A) the product topology. Furthermore, the topolo-
gies on Σ(A) and Σ+(A) are compatible with the metric d(x, y) = 1/2n, where n = inf{|k| | xk 6= yk}
[133]. Thus two elements of Σ(A) are close if and only if they agree on a long central block. In a
one-sided shift, two elements are close if and only if they agree on a long initial block.

A subshift is a pair (X,σ) (or (X+, σ)), where X ⊂ Σn (or X+ ⊂ Σ+
n ) is a nonempty, closed, shift-

invariant set. We will be concerned primarily with subshifts of the 2-shift dynamical system.

A finite string of letters fromA is called a block and the length of a block B is denoted |B|. Furthermore,
a block of length n is an n-block. A formal language is a set L of blocks, possibly including the empty
block ε, on a fixed finite alphabet A. The set of all blocks on A, including the empty block ε, is denoted
by A∗. Given a subshift (X,σ) of a full shift, let Ln(X) denote the set of all n-blocks that occur in
points in X. The language of X is the collection

L(X) =

∞⋃
n=0

Ln(X).

A shift of finite type (SFT) is a subshift determined by excluding a finite set of blocks.

Let A be a finite alphabet. A map θ : A → A∗ is called a substitution. A substitution θ is extended
to A∗ and AN by θ(b1b2 . . . ) = θ(b1)θ(b2) . . . . A substitution θ is called primitive if there is m such that
for all a ∈ A the block θm(a) contains every element of A.



1.4. Realizations of systems 7

There is natural dynamical system associated with any sequence. Given a one-sided sequence u, we
let X+

u be the closure of {σnu|n ∈ N}, where σ is the usual shift. Then (X+
u , σ) is the dynamical system

associated with u. For any sequence u, denote by L(u) the family of all subblocks of u.

Exercise 1.3.1. Show that X+
u consists of all the one-sided sequences on A all of whose subblocks are

subblocks of u: X+
u = {x : L(x) ⊂ L(u)}.

In a topological dynamical system (X,T ), a point x ∈ X is called almost periodic or syndetically
recurrent if for every ε > 0 there is some N = N(ε) such that the set {n ≥ 0 : d(Tnx, x) < ε} has gaps
of size at most N. If X is a subshift, then x ∈ X is almost periodic if and only if every allowed block in
x appears in x with bounded gaps.

A topological dynamical system (X,T ) is minimal if one of the following equivalent properties holds:

1. X contains no proper closed invariant set;

2. X is the orbit closure of an almost periodic point;

3. every x ∈ X has a dense orbit in X.

The complexity function of a language L is the function pL(n) = card(L ∩ An), n ≥ 0. This is
an elementary, although possibly complicated and informative, measure of the size or complexity of a
language and, if the language is that of a subshift, of the complexity of the associated symbolic dynamical
system. Properties of this function (for example its asymptotic growth rate, which is the topological
entropy of the associated subshift) and extensions and variations comprise most of the subject matter
of these notes.

A Bratteli diagram is a graded graph whose set V of vertices is the disjoint union of finite sets Vn, n =
0, 1, 2, . . . ; V0 consists of a single vertex v0, called the root; and the set E of edges is also the disjoint
union of sets En, n = 1, 2, . . . such that the source vertex of each edge e ∈ En is in Vn−1 and its range
vertex is in Vn. Denote by X the set of all infinite directed pathsx = (xn), xn ∈ En for all n ≥ 1, in
this graph that begin at the root. X is a compact metric space when we agree that two paths are close
if they agree on a long initial segment. Except in some degenerate situations the space X is infinite,
indeed uncountable, and homeomorphic to the Cantor set.

Suppose we fix a linear order on the set of edges into each vertex. Then the set of paths X is partially
ordered as follows: two paths x and y are comparable if they agree from some point on, in which case we
say that x < y if at the last level n where they are different, the edge xn of x is smaller than the edge
yn of y. A map T , called the Vershik map, is defined by letting Tx be the smallest y that is larger than
x, if there is one. There may be maximal paths x for which Tx is not defined, as well as minimal paths.
In nice situations, T is a homeomorphism after the deletion of perhaps countably many maximal and
minimal paths and their orbits. If the diagram is simple—which means that for every n there is m > n
such that there is a path in the graph from every v ∈ Vn to every w ∈ Vm—and if there are exactly one
maximal path xmax and exactly one minimal path xmin, then one may define Txmax = xmin and arrive
at a minimal homeomorphism T : X → X. See [23,70] for surveys on Bratteli-Vershik systems.

1.4 Realizations of systems

There are several results concerning the realization of measure-preserving systems as topological dynam-
ical systems up to measure-theoretic isomorphism.

1. The Jewett-Krieger Theorem states that every non-atomic ergodic measure-preserving system on a
Lebesgue space is measure-theoretically isomorphic to a system (X,B, µ, T ) in which X is the Cantor
set, B is the completion of the Borel σ-algebra of X, T is a minimal homeomorphism (every orbit is
dense), and µ is a unique T -invariant Borel probability measure on X.
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2. The Krieger Generator Theorem says that every ergodic measure-preserving system (X,B, µ, T ) of
finite entropy (see below) is measure-theoretically isomorphic to a subsystem of any full shift which has
strictly larger (topological) entropy—see below—with a shift-invariant Borel probability measure. Thus
full shifts are “universal” in this sense. The proof is accomplished by producing a finite measurable
partition of X such that coding orbits according to visits of the members of the partition produces a
map to the full shift that is one-to-one a.e. Recently Seward [172, 173] has extended the theorem to
actions of countable groups, using his definition of Rokhlin entropy (see Section 2.9).

3. Krieger proved also that such an embedding is possible into any mixing shift of finite type (see below)
that has strictly larger topological entropy than the measure-theoretic entropy of (X,B, µ, T ). Moreover,
he gave necessary and sufficient conditions that an expansive homeomorphism of the Cantor set be
topologically conjugate to s subshift of a given mixing shift of finite type. “There is a version of the finite
generator theorem for ergodic measure preserving transformations of finite entropy, that realizes such a
transformation by means of an invariant probability measure of any irreducible and aperiodic topological
Markov chain, whose topological entropy exceeds the entropy of the transformation ([4], [2 28]). One
can say that a corollary of theorem 3 achieves for minimal expansive homeomorphisms of the Cantor
discontinuum what the finite generator theorem does for measure preserving transformations.” [126]

4. Lind and Thouvenot [132] proved that hyperbolic toral automorphisms (the matrix has no eigen-
value of modulus 1) are universal. This was extended by Quas and Soo [158] to quasi-hyperbolic toral
automorphisms (no roots of unity among the eigenvalues), and they also showed that the time-1 map of
the geodesic flow on a compact surface of constant negative curvature is universal [159].

5. Every minimal homeomorphism of the Cantor set is topologically conjugate to the Vershik map on
a simple Bratteli diagram with unique maximal and minimal paths [83,95].

6. Every ergodic measure-preserving system is measure-theoretically isomorphic to a minimal Bratteli-
Vershik system with a unique invariant Borel probability measure [178,179].



Part 2

Asymptotic exponential growth rate

2.1 Topological entropy

Let X be a compact metric space and T : X → X a homeomorphism.

First definition [2]: For an open cover U of X, let N(U) denote the minimum number of elements in a
subcover of U , H(U) = logN(U),

h(U , T ) = lim
n→∞

1

n
H(U ∨ T−1U ∨ . . . ∨ T−n+1U),

and
h(T ) = sup

U
h(U , T ).

Second definition [37]: For n ∈ N and ε > 0, a subset A ⊂ X is called n, ε−separated if given a, b ∈ A
with a 6= b, there is k ∈ {0, . . . , n−1} with d(T ka, T kb) ≥ ε. We let S(n, ε) denote the maximum possible
cardinality of an n, ε-separated set. Then

h(T ) = lim
ε→0+

lim sup
n→∞

1

n
logS(n, ε).

Third definition [37]: For n ∈ N and ε > 0, a subset A ⊂ X is called n, ε-spanning if given x ∈ X
there is a ∈ A with d(T ka, T kx) ≤ ε for all k = 0, . . . , n−1. We let R(n, ε) denote the minimum possible
cardinality of an n, ε-spanning set. Then

h(T ) = lim
ε→0+

lim sup
n→∞

1

n
logR(n, ε).

Exercise 2.1.1. If (X,T ) is a subshift (X = a closed shift-invariant subset of the set of all doubly
infinite sequences on a finite alphabet, T = σ = shift transformation), then

h(σ) = lim
n→∞

log(number of n-blocks seen in sequences in X)

n
.

Theorem 2.1.1 (“Variational Principle”). h(T ) = sup{hµ(T ) : µ is an invariant (ergodic) Borel prob-
ability measure on X}.

2.2 Ergodic-theoretic entropy

2.2.1 Definition

A finite (or sometimes countable) measurable partition

α = {A1, . . . , Ar}

9



10 Part 2. Asymptotic exponential growth rate

of X is thought of as the set of possible outcomes of an experiment (performed at time 0) or as an
alphabet of symbols used to form messages (the experiment could consist of receiving and reading one
symbol). The entropy of the partition is

Hµ(α) =
∑
A∈α
−µ(A) logµ(A) (the logs can be base e, 2, or r);

it represents the amount of information gained=amount of uncertainty removed when the experiment
is performed or one symbol is received (averaged over all possible states of the world—the amount of
information gained if the outcome is A (i.e., we learn to which cell of α the world actually belongs) is
− logµ(A)). (Note that this is large when µ(A) is small.) Notice that the information gained when we
learn that an event A occurred is additive for independent events.

The partition
T−1α = {T−1A : A ∈ α}

represents performing the experiment α (or reading a symbol) at time 1, and α ∨ T−1α ∨ . . . ∨ T−n+1α
represents the result of n repetitions of the experiment (or the reception of a string of n symbols). Then
H(α ∨ T−1α ∨ . . .∨ T−n+1α)/n is the average information gain per repetition (or per symbol received),
and

h(α, T ) = lim
n→∞

1

n
H(α ∨ T−1α ∨ . . . ∨ T−n+1α)

is the long-term time average of the information gained per unit time. (This limit exists because of the
subadditivity of H: H(α ∨ β) ≤ H(α) +H(β).)

The entropy of the system (X,B, µ, T ) is defined to be

hµ(T ) = sup
α
h(α, T ),

the maximum information per unit time available from any finite- (or countable-) state stationary process
generated by the system.

Theorem 2.2.1 (Kolmogorov-Sinai). If T has a finite generator α—a partition α such that the smallest
σ-algebra that contains all T jα, j ∈ Z, is B—then hµ(T ) = h(α, T ). (Similarly if T has a countable
generator with finite entropy.)

Theorem 2.2.2. If {αk} is an increasing sequence of finite partitions which generates B up to sets of
measure 0, then h(αk, T )→ h(T ) as k →∞.

2.2.2 Conditioning

For a countable measurable partition α and sub-σ-algebra F of B, we define the conditional information
function of α given F by

Iα|F (x) = −
∑
A∈α

logµ(A|F)(x)χA(x);

this represents the information gained by performing the experiment α (if the world is in state x) after
we already know for each member of F whether or not it contains the point x. The conditional entropy
of α given F is

H(α|F) =

∫
X

Iα|F (x)dµ(x);

this is the average over all possible states x of the information gained from the experiment α. When F
is the σ-algebra generated by a partition β, we often just write β in place of F .

Proposition 2.2.3. 1. H(α ∨ β|F) = H(α|F) +H(β|B(α) ∨ F).

2. H(α|F) is increasing in its first variable and decreasing in its second.

Theorem 2.2.4. For any finite (or countable finite-entropy) partition α,

h(α, T ) = H(α|B(T−1α ∨ T−2α ∨ . . .)).
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2.2.3 Examples

1. Bernoulli shifts: h = −
∑
pi log pi . Consequently B(1/2, 1/2) is not isomorphic to B(1/3, 1/3, 1/3).

2. Markov shifts: h = −
∑
pi
∑
Pij logPij .

3. Discrete spectrum (the span of the eigenfunctions is dense in L2): h = 0 . (Similarly for rigid
systems—ones for which there is a sequence nk →∞ with Tnkf → f for all f ∈ L2.) Similarly for
any system with a one-sided generator, for then h(α, T ) = H(α|α∞1 ) = H(α|B) = 0. It’s especially
easy to see for an irrational rotation of the circle, for if α is the partition into two disjoint arcs,
then αn0 only has 2(n+ 1) sets in it.

4. Products: h(T1 × T2) = h(T1) + h(T2) .

5. Factors: If π : T → S, then h(T ) ≥ h(S) .

6. Bounded-to-one factors: h(T ) = h(S). See [149, p. 56].

7. Skew products: h(T × {Sx}) = h(T ) + hT (S) . Here the action is (x, y) → (Tx, Sxy), with each
Sx a m.p.t. on Y, and the second term is the fiber entropy

hT (S) = sup{
∫
X

H(β|S−1
x β ∨ S−1

x S−1
Txβ ∨ . . .)dµ(x) : β is a finite partition of Y }.

8. Automorphism of the torus: h =
∑
|λi|>1

log |λi| (the λi are the eigenvalues of the integer matrix

with determinant ±1).

9. Pesin’s Formula: If µ� m (Lebesgue measure on the manifold), then

hµ(f) =

∫ ∑
λk(x)>0

qk(x)λk(x) dµ(x),

where the λk(x) are the Lyapunov exponents and qk(x) = dim(Vk(x)\Vk−1(x)) are the dimensions
of the corresponding subspaces.

10. Induced transformation (first-return map): For A ⊂ X, h(TA) = h(T )/µ(A).

11. Finite rank ergodic: h = 0 .

Proof. Suppose rank = 1, let P be a partition into two sets (labels 0 and 1), let ε > 0. Take a
tower of height L with levels approximately P -constant (possible by rank 1; we could even take
them P -constant) and µ(junk) < ε. Suppose we follow the orbit of a point N � L steps; how
many different P,N -names can we see? Except for a set of measure < ε, we hit the junk n ∼ εN
times. There are L starting places (levels of the tower); C(N,n) places with uncertain choices of
0, 1; and 2n ways to choose 0 or 1 for these places. So the sum of µ(A) logµ(A) over A in Pn−1

0 is
≤ the log of the number of names seen in the good part minus the log of 2N (ε/2N ) log(ε/2N ), and
dividing by N gives

logL

N
+NH(ε, 1− ε) +

Nε

N
+
ε(− log ε+N)

N
∼ 0.

Similarly for any finite partition P. Also for rank r—then we have to take care (not easily) about
the different possible ways to switch columns when spilling over the top.

Exercise 2.2.1. Prove the statements in 1–5 above.

2.2.4 Ornstein’s Isomorphism Theorem

Two Bernoulli shifts are isomorphic if and only if they have the same entropy.
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2.2.5 Shannon-McMillan-Breiman Theorem

For a finite measurable partition α, and x ∈ X, let α(x) denote the member of α to which x belongs,
and let αn−1

0 = α ∨ T−1α ∨ . . . ∨ T−n+1α. If T is an ergodic m.p.t. on X, then

− logµ(αn−1
0 (x))

n
→ h(α, T ) a.e. and in L1.

2.2.6 Brin-Katok local entropy formula [39]

Let (X,T ) be a topological dynamical system (with X compact metric as usual). For x ∈ X, δ > 0, n ∈ N,
define

(2.2.1)

B(x, δ, n) = {y : d(T jx, T jy) < δ for all j = 1, . . . , n},

h+(x) = lim
δ→0

lim sup
n→∞

− logµ(B(x, δ, n)

n
, and

h−(x) = lim
δ→0

lim inf
n→∞

− logµ(B(x, δ, n)

n
.

Then h+(x) = h−(x) a.e., and

(2.2.2) hµ(T ) =

∫
X

h+(x) dµ.

If (X,B, µ, T ) is ergodic, then h+(x) = h−(x) = hµ(T ) a.e. with respect to µ. Thus the Bowen-Dinaburg
ball B(x, δ, n) plays the same role as the partition αn−1

0 in the Shannon-McMillan-Breiman Theorem.
The functions h+ and h− may be called the upper and lower local entropies of (X,B, µ, T ).

2.2.7 Wyner-Ziv-Ornstein-Weiss entropy calculation algorithm

For a stationary ergodic sequence {ω1, ω2, . . .} on a finite alphabet and n ≥ 1, let Rn(ω) = the first place
to the right of 1 at which the initial n-block of ω reappears (not overlapping its first appearance). Then

logRn(ω)

n
→ h a.e..

This is also related to the Lempel-Ziv parsing algorithm, in which a comma is inserted in a string ω
each time a block is completed (beginning at the preceding comma) which has not yet been seen in the
sequence.

2.3 Measure-theoretic sequence entropy

A. G. Kushnirenko [129] defined the sequence entropy of a measure-preserving system (X,B, µ, T ) with
respect to a sequence S = (ti) of integers as follows. Given a (finite or countable) measurable partition
α of X, as usual H(α) = −

∑
A∈α µ(A) logµ(A). Then we let

(2.3.1) hSµ(α, T ) = lim sup
1

n
H(

n∨
i=1

T−tiα) and hSµ(T ) = sup
α
hSµ(α, T ),

the supremum being taken over all countable measurable partitions of finite entropy. hSµ(α, T ) is the
asymptotic rate of information gain if a measurement α is made on a dynamical system at the times in
the sequence S. hSµ(T ) is an isomorphism invariant. Kushnirenko

1. calculated the (2n) entropy for some skew product maps on the torus;

2. used (2n) entropy to prove that the time-1 map of the horocycle flow on a two-dimensional ori-
entable manifold of constant negative curvature is not isomorphic to its Cartesian square, although
both have countable Lebesgue spectrum and entropy zero; and
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3. proved that a system (X,B, µ, T ) has purely discrete spectrum if and only if hSµ(T ) = 0 for every
sequence S.

D. Newton [146] (see also [127]) showed that for each sequence S there is a constant K(S) such that
for every system (X,B, µ, T ), hSµ(T ) = K(S)h(T ), unless K(S) = ∞ and h(T ) = 0; if K(S) = 0 and

h(T ) =∞, then hSµ(T ) = 0. thus sequence entropy is no better than ordinary entropy for distinguishing
positive entropy systems up to isomorphism. The constant K(S) is defined as follows:

(2.3.2) K(S) = lim
k→∞

lim sup
n→∞

1

n
card

n⋃
i=1

[−k + ti, k + ti].

Exercise 2.3.1. Calculate K(S) for the sequences (i), (2i), (3i), (i2), (pi) (pi = i’th prime).

Saleski [165, 166] established connections among sequence entropies and various mixing properties.
In particular, he showed that (1) (X,B, µ, T ) is strongly mixing if and only if for every (countable)
measurable partition α with H(α) < ∞, and every increasing sequence S in N, there is a subsequence
S0 for which hS0

(α, T ) = H(α); and (2) (X,B, µ, T ) is weakly mixing if and only if for every countable
measurable partition of finite entropy there is an increasing sequence S in N for which hSµ(α, T ) = H(α).

These results were improved by Hulse [105] as follows. (1) (X,B, µ, T ) is strongly mixing if and only
if every infinite sequence S has a subsequence S0 such that for every measurable partition α of finite
entropy, hS0(α, T ) = H(α). (2) (X,B, µ, T ) is weakly mixing if and only if there exists an increasing
sequence S in N such that for every measurable partition α of finite entropy, hSµ(α, T ) = H(α).

Garcia-Ramos [82] has recently clarified, in both the measure-theoretic and topological contexts, the
connections among discrete spectrum, zero sequence entropy, and some new concepts of equicontinuity.

2.4 Topological sequence entropy

T. N. T. Goodman [87] defined sequence entropy for topological dynamical systems X,T ), where X is
a compact Hausdorff space and T : X → X is a continuous map. As in the definition of topological
entropy, for any open cover U of X, N(U ) denotes the minimum cardinality of subcovers of U and
H(U ) = logN(U ). For an open cover U and sequence S = (ti) of integers,

(2.4.1) hStop(U , T ) = lim
n→∞

1

n
H(

n∨
i=1

T−tiα),

and hStop(T ) = supU hStop(U , T ). Goodman gives equivalent Bowen-type definitions and establishes some
basic properties. He proves the topological analogue of Newton’s result with the same constant K(S) in
case X has finite covering dimension and shows that topological sequence entropy does not satisfy the
variational principle—it is possible that hStop(T ) > supµ h

S
µ(X,B, µ, T ).

Huang, Li, Shao, and Ye [99] studied “sequence entropy pairs” and “weak mixing pairs”, in the spirit
of the study of entropy pairs initiated by F. Blanchard in his investigation of topological analogues
of the K property [24–26]. For sets U, V ⊂ X in a topological dynamical system (X,T ), we define
N (U, V ) = {n ≥ 0 : U ∩ T−nV 6= ∅}. Then (x1, x2) ∈ X ×X is defined to be a weak mixing pair if for
any open neighborhoods U1, U2 of x1, x2, respectively, N (U1, U1) ∩ N (U1, U2) 6= ∅ (cf. [151]). Denote
the set of weak mixing pairs by WM(X,T ).

We say that (x1, x2) ∈ X ×X \ 4 is a sequence entropy pair if whenever U1, U2 are closed mutually
disjoint neighborhoods of x1, x2, respectively, there exists a sequence S in N such that hSµ({U c1 , U c2}, T ) >
0. The system (X,T ) is said to have uniform positive sequence entropy (for short s.u.p.e.) if every pair
(x1, x2) ∈ X ×X \ 4 is a sequence entropy pair.

Exercise 2.4.1. (X,T ) has s.u.p.e. if and only if for any cover U of X by two non-dense open sets,
there is a sequence S in N such that hSµ(U , T ) > 0.
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Huang, Li, Shao, and Ye show that (X,T ) is topologically weakly mixing if and only if WM(X,T ) =
X ×X \ 4, and that topological weak mixing is also equivalent to s.u.p.e.

Huang, Shao and Ye [101] gave new proofs of many known results about measure-theoretic and topo-
logical sequence entropy and characterized mild mixing and rigidity in terms of sequence entropy. Recall
that a measure-preserving system is weakly mixing if and only if its product with any finite measure-
preserving system is ergodic. Furstenberg and Weiss [81] defined the stronger property of mild mixing:
a finite measure-preserving system is mildly mixing if and only if its product with any ergodic system,
even one preserving an infinite measure, is ergodic. A system is mildly mixing if and only if it has no
proper rigid factors, i.e. no proper factors for which there exists a sequence (ni) such that Tnif → f
in L2 for all f ∈ L2. Zhang [188, 189] provided sequence entropy characterizations of mild mixing and
relative mild mixing. An IP set is the set of all finite sums of a sequence of natural numbers. Huang,
Shao, and Ye prove that an invertible measure-preserving system (X,B, µ, T ) (with µ(X) = 1) is mildly
mixing if and only if for every measurable set A with measure strictly between 0 and 1 and every IP set
F there is an infinite sequence S ⊂ F such that hSµ({B,Bc}, T ) > 0; and that it is rigid if and only if

there is an IP set F such that hSµ(T ) = 0 for every infinite S ⊂ F .

A topological dynamical system (X,T ) is called topologically mildly mixing if for every transitive system
(X ′, T ′) the product system (X ×X ′, T × T ′) is transitive [84, 102]. Huang, Shao, and Ye show that a
topological dynamical system (X,T ) is topologically weakly mixing if and only if for each finite cover U
of X consisting of non-dense open sets there is an infinite sequence S in N such that hStop(U , T ) > 0; and
that it is topologically mildly mixing if and only if for each finite cover U of X consisting of non-dense
open sets and IP set F there is an infinite sequence S ⊂ F such that hStop(U , T ) > 0.

2.5 Slow entropy

There have been several efforts to attach to a dynamical system measures of the rate of growth of
Hµ(αn−1

0 ), in the measure-preserving case, or N(Un−1
0 ), in the topological case, that are finer than the

exponential growth rate, which gives the ordinary entropies. The quantities may be defined so as to
be isomorphism invariants, and then they can be used to try to distinguish systems of zero or infinite
entropy up to isomorphism. It seems that more has been done in the zero entropy case, where there are
many classes of familiar and interesting examples still requiring further study. The definitions of entropy
dimension and power entropy are designed especially to detect polynomial growth rates. See [93, p. 37
ff., p. 92 ff.] and [123].

F. Blume [28–31] defined a variety of rates of entropy convergence as follows. Let (X,B, µ, T ) be a
measure-preserving system and P a fixed class of finite measurable partitions of X. Let a = (an) be an
increasing sequence of positive numbers with limit ∞, and let c > 0. Then (X,B, µ, T ) is said to be of
type LS ≥ c for (a, P ) if

(2.5.1) lim sup
n→∞

Hµ(αn−1
0 )

an
≥ c for all α ∈ P,

and of type LI ≥ c for (a, P ) if

(2.5.2) lim inf
n→∞

Hµ(αn−1
0 )

an
≥ c for all α ∈ P.

The types LS ≤ c, LI ≤ c, LS <∞, LS =∞, LI <∞, LI =∞, LS > 0, LI > 0 are defined analogously.

When focusing on zero-entropy systems, it is natural to consider the class P of all partitions of
X into two sets of positive measure, since every zero-entropy system has a two-set generator [125].
Then the quantities defined above are invariants of measure-theoretic isomorphism. If hµ(X,T, α) =
limn→∞Hµ(αn−1

0 )/n = 0, one should restrict attention to sequences a for whch an/n→ 0.

Pointwise entropy convergence rates can be defined by using the information function

(2.5.3) Iα(x) = − log2 µ(α(x)),
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where α(x) denotes the cell of α to which the point x belongs. Then (X,B, µ, T ) is defined to be of
pointwise type LS ≥ c for (a,P) if

(2.5.4) lim sup
n→∞

Iαn−1
0

(x)

an
≥ c a.e. for all α ∈ P,

and the other pointwise types are defined analogously.

Here are some of Blume’s results in this area.

1. If an/n→ 0 and P is the class of two-set partitions, then there are no aperiodic measure-preserving
systems of types LI <∞, LS <∞, LS ≤ c, or LI ≤ c.

2. Suppose that g : [0,∞)→ R is a monotone increasing function for which

(2.5.5)

∫ ∞
1

g(x)

x2
dx <∞

and an = g(log2 n) for all n = 1, 2, . . . . If T k is ergodic for all k ∈ N, then (X,B, µ, T ) is of type
LS =∞ for a,P.

3. Every rank-one mixing transformation is of type LS > 0 for an = log2 n and P.

4. No rank-one system can have a convergence rate of type LI ≥ c for any sequence an that grows
faster than log2 n: If (X,B, µ, T ) is rank one, then there is a partition α ∈ P for which

(2.5.6) lim inf
n→∞

Hµ(αn−1
0 )

log2 n
≤ 2.

5. Every totally ergodic system is of pointwise type LS ≥ 1 for ((log2 n),P).

Exercise 2.5.1. Show that every measure-preserving system is of pointwise type LI <∞ and LS <∞
for ((n),P). (Hint: SMB.)

Exercise 2.5.2. Show that every K-system (all nontrivial factors have positive entropy) is of pointwise
type LS > 0 and LI > 0 for ((n),P).

In order to study the problem of the realizability of measure-preserving actions of amenable groups
by diffeomorphisms of compact manifolds, Katok and Thouvenot [117] defined entropy-like measure-
theoretic isomorphism invariants in terms of subexponential growth rates. One fixes a sequence (an) of
positive numbers increasing to infinity, or a family (an(t)), 0 < t <∞, such as an(t) = nt or an(t) = ent

(the latter will produce the usual entropy). We describe the case when the acting group is Z2, i.e. the
action of two commuting measure-preserving transformations S and T on a probability space (X,B, µ).
Let α be a finite measurable partition of X and ε > 0. Let

(2.5.7) αn =

n−1∨
i=0

n−1∨
j=0

S−iα ∨ T−jα

denote the refinement of α by the action of [0, n− 1]2 ⊂ Z2. The elements of each αn are given a fixed
order, so that they become vectors of length n2, and the d distance between two of them is defined to
be the proportion of places at which they disagree. We define S(α, n, ε) to be the minimum number of
elements of αn such that the union of d, ε balls centered at them has measure at least 1− ε.

Denote by A(α, ε) any one of

(2.5.8)
lim sup
n→∞

S(α, n, ε)

an
, lim inf

n→∞

S(α, n, ε)

an
,

sup{t : lim sup
n→∞

S(α, n, ε)an(t) > 0}, or sup{t : lim inf
n→∞

S(α, n, ε)an(t) > 0},
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and then define

(2.5.9) A(α) = lim
ε→0

A(α, ε) and A = sup
α
A(α),

so that A is an isomorphism invariant.

The authors show that for an ergodic measure-preserving action by diffeomorphisms of Z2 on a compact
manifold (or even bi-Lipschitz homeomorphisms on a compact metric space) there is a sequence (an)
for which S(α, n, ε) grows at most exponentially. Then they give a cutting and stacking construction
that alternates periodic and independent concatenations to produce an action which violates this growth
condition and therefore cannot be realized as a smooth action preserving a Borel (not necessarily smooth)
measure.

Hochman [96] used this type of argument to produce examples of infinite measure-preserving Zd actions
for d > 1 that are not isomorphic to actions by diffeomorphisms on a compact manifold preserving a σ-
finite Borel measure. (Because of Krengel’s theorem [124] stating that every σ-finite measure-preserving
action of Z has a two-set generator, there cannot be such examples when d = 1—the given measure can
be carried to a horseshoe inside a differentiable system.)

Power entropy is useful as a measure of complexity in zero-entropy systems if the relevant growth rate
is polynomial. For example, if, as in Section 2.1, for a topological dynamical system (X,T ) one denotes
by S(n, ε) the maximum possible cardinality of an (n, ε)-separated set, one may define

(2.5.10)

h+
pow(X,T ) = lim

ε→0
lim sup
n→∞

logS(n, ε)

log n
and

h−pow(X,T ) = lim
ε→0

lim inf
n→∞

logS(n, ε)

log n
,

and define hpow to be their common value when they are equal. In this case

(2.5.11) S(n, ε) ∼ nhpow for small ε.

If one replaces in the preceding definition the Bowen-Dinaburg metric

(2.5.12) dn(x, y) = sup{d(T kx, T ky) : k = 0, 1, . . . , n− 1}

(d denotes the metric on X) by the Hamming metric

(2.5.13) dn(x, y) =
1

n

n−1∑
k=0

d(T kx, T ky),

the resulting entropies are called modified power entropies. The recent paper [88] shows the following
(see also Section 3.11).

1. Neither power entropy nor modified power entropy satisfies a variational principle with respect to
any real-valued isomorphism invariant defined for measure-preserving systems.

2. Recall that a minimal system (X,T ) is called almost automorphic if it is an almost one-to-one
extension of a minimal equicontinuous system (Y, S): there is a factor map π : X → Y such that
Ω = {y ∈ Y : cardπ−1{y} = 1} is nonempty (in which case it is residual [176]—see Exercise 2.5.3).
Such a system (X,T ) has a unique invariant measure, µ. If µ(Ω) = 1, the extension is called
regular. It is proved in [88] that the modified power entropy cannot tell the difference between
equicontinuous and almost automorphic systems, since it is 0 for both—and in fact supn S(n, ε) <
∞ for all ε.

3. If (X,T ) is almost automorphic (but not equicontinuous), then there is ε > 0 such that supn S(n, ε) =
∞. (Cf. Theorem 3.6.1.) Consequently “power entropy” redefined for some other growth scale can
distinguish between equicontinuous and almost automorphic systems.
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Exercise 2.5.3. Prove the statement from above that if π : X → Y is a factor map between minimal
systems for which there exists a singleton fiber, then {y ∈ Y : cardπ−1y = 1} is residual. (Hint: Show
that the function g(y) = sup{dX(x, x′) : πx = πx′} is upper semicontinuous on Y .)

2.6 Entropy dimension

In 1997 de Carvalho [63] proposed an invariant for topological dynamical systems that is possibly finer
than topological entropy. For a topological dynamical system (X,T ), define

(2.6.1) dtop(X,T ) = inf{s > 0 : sup
U

lim sup
n→∞

1

ns
logN(Un−1

0 ) = 0},

the supremum being taken over all open covers U of X. Recall that Un−1
0 = U ∨ T−1U ∨ · · · ∨ T−n+1U ,

and N(U) denotes the minimal number of elements in any subcover of U .

The author also defines a version for measure-theoretic systems (X,B, µ, T ):

(2.6.2) dmt(X,T ) = inf{s > 0 : sup
α

lim sup
n→∞

1

ns
Hµ(αn−1

0 ) = 0},

the supremum being taken over all finite measurable partitions α of X.

The author shows that if the topological entropy is finite, then the topological entropy dimension is
less than or equal to 1; while if the topological entropy is finite and positive, then the topological entropy
dimension equals 1. Thus dtop(X,T ) is of interest mainly for zero-entropy systems and could perhaps
be used to show that some zero-entropy systems are not topologically conjugate.

Related definitions were given by Dou, Huang, and Park in 2011 [66]. The upper entropy dimension
of (X,T ) with respect to an open cover is

(2.6.3)

D(U) = inf{s ≥ 0 : lim sup
n→∞

1

ns
logN(Un−1

0 ) = 0}

= sup{s ≥ 0 : lim sup
n→∞

1

ns
logN(Un−1

0 ) =∞}.

The lower entropy dimension of (X,T ) with respect to an open cover U is defined by replacing lim sup
by lim inf. The upper and lower entropy dimensions of (X,T ) are defined to be

(2.6.4) D(X,T ) = sup
U
D(U) and D(X,T ) = sup

U
D(U),

respectively. These are invariants of topological conjugacy. When they are equal, they are denoted by
D(X,T ) and called the entropy dimension of (X,T ). If htop(X,T ) > 0, then again D(X,T ) = 1.

Ferenczi and Park [77] defined another concept of measure-theoretic entropy dimension. Let (X,B, µ, T )
be a measure-preserving system, α a finite measurable partition of X, and ε > 0. The (d, n, ε)-ball around
a point x ∈ X is

(2.6.5) B(x, n, ε) = {y ∈ X : d(αn−1
0 (y), αn−1

0 (x)) < ε}, and

K(n, ε) is the minimum cardinality of a set of (d, n, ε)-balls that covers a set of measure at least 1 − ε.
Because of the Shannon-McMillan-Breiman Theorem, the entropy of the system coded by the partition
α is given by

(2.6.6) hµ(α, T ) = lim
ε→0+

lim
n→∞

logK(n, ε)

n
;

see [115] for the statement in metric spaces.
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Thinking in terms of dimension theory suggests the definitions

(2.6.7)
D(α, ε) = sup{s ∈ [0, 1] : lim sup

n→∞

logK(n, ε)

ns
> 0},

D(α) = lim
ε→0

D(α, ε), and D(X,B, µ, T ) = sup
α
D(α).

The versions with D use lim inf instead of lim sup.

D and D are called the upper and lower entropy dimensions of (X,B, µ, T ) If they are equal, they are
denoted by D(X,B, µ, T ) and called the entropy dimension. The definitions extend easily to measure-
preserving actions of other groups, especially Zd.

Ahn, Dou, and Park [3] showed that while the topological entropy dimension of a topological dynamical
system (X,T ) always dominates its measure-theoretic entropy dimension for any invariant measure, the
variational principle does not hold: For each t ∈ (0, 1) they construct a uniquely ergodic system (X,T )
with the measure-theoretic entropy dimension D(X,B, µ, T ) = 0 for the unique invariant measure µ,
while the topological entropy dimension D(X,T ) = t.

See [128] and its references for some further developments about entropy dimensions.

2.7 Permutation entropy

The permutation entropy of a real-valued time series was introduced in [16] and studied in the dynamical
setting, especially for interval maps, in [15]. It may be regarded as a measure of the amount of information
obtained by observing the ordering of an initial orbit piece, and thus of the complexity of the orderings of
orbits (or sequences of measurements). Instead of counting the number of n-blocks that arise from coding
orbits with respect to a partition, one counts the number of different order patterns that can appear (or
computes the Shannon entropy, with respect to an invariant measure, of the partition according to order
patterns).

Let T : X → X be a continuous map on a compact interval X ⊂ R. For a fixed n ∈ N one partitions
X according to the order patterns of the first n points in the orbit as follows. Denote x0 = T kx for
k = 0, 1, . . . , n− 1. We define a permutation τ(x) = (k1k2 . . . kn−1) of (0, 1, . . . , n− 1) by

(2.7.1)
xk1 ≤ xk2 ≤ · · · ≤ xkn−1

and, to break ties, τ(i) < τ(i+ 1) in case xi = xi+1.

Denote by ρn the partition of X into the nonempty sets Xτ among all the n! permutations τ .

Let µ be an invariant probability measure for (X,T ). The topological and measure-theoretic permuta-
tion entropies of order n are defined to be

(2.7.2)

hPtop(n) =
1

n− 1
log card ρn and

hPµ (n) =
1

n− 1

∑
A∈ρn

−µ(A) logµ(A).

Theorem 2.7.1. [15] If T : X → X is a piecewise monotone map on an interval X ⊂ R, then the
limits of the permutation entropies of order n exist as n tends to infinity and equal the usual entropies:

(2.7.3) lim
n→∞

hPtop(n) = htop and lim
n→∞

hPµ (n) = hµ(X,T ).

This theorem, along with its extensions mentioned just below, is analogous to Theorems 4.2.10 and
4.3.3, providing further evidence for a topological version of Theorem 4.3.4.

The definitions extend to arbitrary systems once one assigns to the elements of a finite partition distinct
real numbers or fixes a real or vector-valued function (observable) on X to follow along orbits. To obtain
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complete information (and reach the ordinary entropy) one should consider a generating sequence of
partitions or observables. See [8, 92,118,120] and their references.

The assignment of order patterns to strings from a totally ordered set is a potentially many-to-one
function. For example, the observation strings 321233 and 421333 both determine the permutation
τ = (324561). Haruma and Nakajima [92] clarified and extended previous results by showing (by
counting) that for finite-state stationary ergodic processes the permutation entropy coincides with the
Kolmogorov-Sinai entropy.

For a recent survey of permutation entropies and their relation to ordinary entropies, see [119]. These
quantities may be useful in numerical studies of actual systems, since they can be calculated from
observed orbits, their behavior as a parameter determining the system changes may reflect the actual
entropy even if slow to approach the limit, and since one observes only order relations they may reduce
computation time.

2.8 Independence entropy

Louidor, Marcus, and Pavlov [138] introduce a measure of how freely one may change symbols at various
places in sequences or higher-dimensional configurations in a symbolic dynamical system and still remain
in the system. Part of the motivation comes from practical questions in coding, where one may want
to insert check bits without violating desirable constraints on the structure of signals, and another part
from questions about the entropy of higher-dimensional subshifts, even shifts of finite type.

We give the definitions for a one-dimensional subshift (X,σ) over a finite alphabet A; the extensions
to Zd subshifts are immediate. The set of nonempty subsets of A is denoted by Â. For a configuration
x̂ ∈ ÂZ, the set of fillings of x̂ is

(2.8.1) Φ(x̂) = {x ∈ AZ : for all k ∈ Z, xk ∈ x̂k},

and the multi-choice shift corresponding to (X,σ) is

(2.8.2) X̂ = {x̂ ∈ ÂZ : Φ(x̂) ⊂ X}.

Thus X̂ consists of all the sequences on Â that display the freedom to flex sequences in X: for those
k ∈ Z for which x̂k is not a singleton, we may freely choose symbols from the sets x̂k and generate
sequences that are always in the original subshift X.

Exercise 2.8.1. Describe X̂ when X is the golden mean shift of finite type (no adjacent 1s).

Exercise 2.8.2. Show that if X is a shift of finite type, then so is X̂.

It can be shown that in dimension d = 1, if X is sofic, then so is X̂ [155]; but in higher dimensions the
question is open.

To define independence entropy, we consider finite blocks B̂ on the alphabet Â, considered as elements

of Â|B̂|, and their fillings

(2.8.3) Φ(B̂) = {x ∈ A|B̂| : xk ∈ x̂k for all k = 0, 1, . . . , |B̂| − 1},

and define the independence entropy of (X,σ) to be the exponential growth rate

(2.8.4) hind(X,σ) = lim
n→∞

log max{card Φ(B̂) : B̂ ∈ Ln(X̂, σ)}
n

of the maximal number of different fillings of n-blocks on the alphabet Â. It is a measure of the maximal
independence among entries in n-blocks, rather than of the number of possible n-blocks.

Exercise 2.8.3. Show that hind(X) ≤ htop(X) for every subshift (X,σ).
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Exercise 2.8.4. Show that the independence entropy of the golden mean shift of finite type is log 2/2.

Louidor and Marcus [139] described a natural way to form the axial product of d one-dimensional shift

spaces X1, . . . , Xd on a common alphabet A. It is the set X1 ⊗ · · · ⊗Xd of all configurations x ∈ AZd

such that for every i = 1, . . . , d and every choice of n1, . . . , ni−1, ni+1, . . . , nd ∈ Z, the “row”

(2.8.5) yk = x(n1,...,ni−1,k,ni+1,...,nd)

is in Xi, together with the Zd action by the shifts in each coordinate. If all Xi = X, the resulting
product is the d-fold axial power X⊗d of X.

Theorem 2.8.1. [138] For one-dimensional subshifts (X,σ),

1. hind(X⊗d) = hind(X)

2. htop(X⊗d) is nonincreasing in d and hence has a limit, h∞(X,σ) ≥ hind(X,σ).

Theorem 2.8.2. [141] For every one-dimensional sushift (X,σ), h∞(X,σ) = hind(X,σ).

2.9 Sofic, Rokhlin, näıve entropies

Lewis Bowen [33, 35, 36] investigated the possibility of extending the Kolmogorov-Ornstein results (two
Bernoulli shifts are measure-theoretically isomorphic if and only if they have the same entropy) to
possibly infinite alphabets and possibly nonamenable acting groups. Let (Ω,F , P ) be a standard Borel
probability space and G a countable discrete group. G acts on the product probability space (Ω,F , P )G

by gx(h) = x(g−1h) for all x ∈ ΩG and g, h ∈ G. First one needs a definition of entropy. If there is a
finite or countable subset Ω0 ⊂ Ω of full measure, then the entropy of the measure P is defined to be

(2.9.1) H(P ) = −
∑
ω∈Ω0

P (ω) logP (ω),

and otherwise H(P ) = ∞. The theorems of Kolmogorov and Ornstein state that two Bernoulli shifts
(Ω,F , P )Z and (Ω′,F ′, P ′)Z are measure-theoretically isomorphic if and only if H(P ) = H(P ′).

Ornstein and Weiss [148] extended these results to countably infinite amenable groups. They also
noted that there were some potential problems for nonamenable groups, by showing that for Bernoulli
actions of the free group on two generators the 2-shift factors onto the 4-shift (each with the product
measure of its uniform measure).

L. Bowen [33] gave a definition of entropy for actions by sofic groups (defined by Gromov [89] and
Weiss [182]) and showed that it is an isomorphism invariant for Bernoulli actions of sofic groups for
countable alphabets with finite entropies, and a complete isomorphism invariant for such Bernoulli
actions by countably infinite linear groups (groups of invertible matrices with entries from a field).
In [36], using his f -invariant (a special case of the sofic entropy), he showed that two Bernoulli actions
by a free group on a finite number of generators on countable alphabets of finite entropy are isomorphic
if and only if the alphabet entropies are equal.

A sofic group [89,182] is a countable group G that can be approximated by finitely many permutations
acting on subsets, as described in the following. (Recall that an amenable group is one that can be
approximated by nearly invariant subsets). For ε > 0 and F ⊂ G, a map φ : G → Sn = the group of
permutations of {1, . . . , n} is called an (F, ε)-approximation to G if the set

(2.9.2)
V (F ) = {v ∈ {1, . . . , n} : φ(f1)φ(f2)v = φ(f1f2)v for all f1, f2 ∈ F

and f1 6= f2 implies φ(f1)v 6= φ(f2)v}

satisfies

(2.9.3) cardV (F ) ≥ (1− ε)n.
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Then G is defined to be sofic if there is a sequence of (Fk, εk)-approximations to G such that εk → 0,
Fk ⊂ Fk+1 for all k, and ∪∞k=1Fk = G. Amenable groups and residually finite groups (the intersection of
all the finite index nomal subgroups is trivial) are sofic. It seems to be an open question whether every
countable group is sofic.

The sofic entropy of a measure-preserving action of a sofic group G on a probability space (X,B, µ) is
defined with respect to a fixed sofic approximation Φ = {φk} of G and a generating finite or countable
ordered measurable partition α of X. According to L. Bowen, it is a measure of the exponential growth
rate of the number of partitions of {1, . . . , nk} that approximate α. A main theorem is that the definition
does not depend on the choice of the partition α.

Let α = {A1, A2, . . . } be an ordered finite measurable partition of X, φ : G → Sn a map, β =
{B1, B2, . . . } a partition of {1, . . . , n}, ν the uniform probability measure on {1, . . . , n}, and F ⊂ G a
finite subset. For any function g : F → N, let

(2.9.4) Ag = ∩f∈F fAg(f) and Bg = ∩f∈Fφ(f)Bg(f).

Define the F -distance between α and β to be

(2.9.5) dF (α, β) =
∑

g:F→N
|µ(Ag)− ν(Bg)|.

Then for ε > 0 AP (φ, α;F, ε) is defined to be the set of all ordered partitions β of {1, . . . , n} with the
same number of atoms as α for which dF (α, β) ≤ ε.

Fix the sofic approximation Φ = {φk} of G. For a finite ordered measurable partition α of X, ε > 0,
and finite F ⊂ G, define

(2.9.6)

H(Φ, α;F, ε) = lim sup
k→∞

1

nk
log cardAP (φk, α;F, ε),

H(Φ, α;F ) = lim
ε→0

H(Φ, α;F, ε),

h(Φ, α) = inf
finite F⊂G

H(Φ, α;F ).

The definitions extend also to countable partitions α.

Theorem 2.9.1. [33] If G is a countable sofic group with sofic approximation Φ = {φk} acting by
measure-preserving transformations on a probability space (X,B, µ), then h(Φ, α) = h(Φ, β) for any two
generating partitions α, β of X.

If G, (X,B, µ),Φ are as in the Theorem and there is a generating partition α (the smallest σ-algebra
containing all sets gα, g ∈ G is, up to sets of measure 0, the full σ-algebra B) with Hµ(α) < ∞, then
hsofic(X,B, µ,G,Φ) is defined to be h(Φ, α); otherwise it is undefined. In principle hsofic(X,B, µ,G,Φ) ∈
[−∞,∞]. Notice that there is not a single sofic entropy of the system, but a family depending on the
sofic approximation Φ to G.

L. Bowen has also proved [35] that if G is amenable, then for every sofic approximation Φ the sofic
entropy hsofic(X,B, µ,G,Φ) coincides with the ordinary entropy [148]. Greatly generalizing the Ornstein-
Weiss example mentioned above, L. Bowen also showed [34] that any two nontrivial Bernoulli actions by
a countable group that contains a nonabelian free subgroup are weakly isomorphic—each is a measure-
preserving factor of the other.

Kerr and Li (see [122] and its references) have studied sofic entropy for both measure-preserving and
topological sofic group actions as well as the relation of a kind of combinatorial independence with mixing
properties and positive entropy. (Maybe there is a connection with the ideas in [139]?)

P. Burton [42] picked up on a suggestion of L. Bowen and pursued a definition of entropy for actions
of nonamenable groups that at first seems mybe useless, because for such group actions it is always
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either 0 or ∞. However, the quantity does thus serve to divide systems into two disjoint classes, and its
relation to sofic entropy is of interest. There are both measure-theoretic (already defined by L. Bowen)
and topological (due to P. Burton) versions.

Let (X,B, µ,G) be a measure-preserving system, with (X,B, µ) a standard probability space and G a
countable discrete group. For a finite measurable partition α of X and finite F ⊂ G, αF = ∨g∈F (gα).
Then one may define

(2.9.7)
hnv(X,µ,G, α) = inf

{
Hµ(αF )

cardF
: F a finite nonempty subset of G

}
and

hnv(X,µ,G) = sup{hnv(X,µ,G, α) : α a finite partition of X}.

Similarly in the topological case. If G is a countable group acting by homeomorphisms on a compact
metric space X, then for an open cover U of X and finite F ⊂ G one defines UF = ∨g∈F (gU),

(2.9.8)
htnv(X,G,U) = inf

{
logN(UF )

cardF
: F a finite nonempty subset of G

}
and

htnv(X,G) = sup{htnv(X,G,U) : U an open cover of X}.

L. Bowen proved that if G is nonamenable, then hnv(X,µ,G) is always either 0 or ∞, and P. Burton
noted that for G nonamenable also always htnv(X,G) is 0 or ∞.

Verifying conjectures of L. Bowen, P. Burton proved that for finitely generated G, if htnv(X,G) = 0,
then the topological sofic entropy [121] of (X,G) is nonnegative for every sofic approximation Φ for G.
The analogous statement in the measure-preserving case has been proved by Abert, Austin, Seward, and
Weiss (see [42]).

Seward [172,173] defined the Rokhlin entropy of a measure-preserving system (X,B, µ,G), with (X,B, µ)
a standard probability space and G a countably infinite group, to be

(2.9.9) hRok(X,B, µ,G) = inf{Hµ(α) : α a countable Borel generating partition}.

Rokhlin [163] proved that for a measure-preserving Z action the Rokhlin entropy coincides with the
ordinary Kolmogorov-Sinai entropy: hRok(X,B, µ,G) = h(X,B, µ,Z). Now it is known that the Rokhlin
entropy and ordinary entropy coincide for all free ergodic measure-preserving actions of amenable groups.
With this definition Seward was able to extend Krieger’s finite generator theorem to actions of arbitrary
countable groups.

Theorem 2.9.2. [172, 173] Let G be a countably infinite group, suppose that the system (X,B, µ,G),
with (X,B, µ) a non-atomic standard probability space, is ergodic, and p = (pi) is a finite or countable
probability vector. If

(2.9.10) hRok(X,B, µ,G) < H(p) =
∑
−pi log pi,

then there is a generating partition α = {Ai} with µ(Ai) = pi for all i. In particular, if hRok(X,B, µ,G) <
log k for some integer k, then there is a generator α with k elements, and (X,B, µ,G) embeds in the
k-shift ({0, 1, . . . , k − 1}G, G).

2.10 Kolmogorov complexity

The (Kolmogorov) complexity K(w) of a finite sequence w on a finite alphabet is defined to be the
length of the shortest program that when input to a fixed universal Turing machine produces output w
(or at least a coding of w by a block of 0’s and 1’s). For a topological dynamical system (X,T ), open
cover U = {U0, . . . , Ur−1} of X, x ∈ X, and n ≥ 1, we consider the set of codings of the initial n points
in the orbit of x according to the cover U : let C(x, n) = the set of n-blocks w on {0, . . . , r− 1} such that
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T jx ∈ Uwj , j = 0, . . . , n. Then we define the upper and lower complexity of the orbit of a point x ∈ X
to be

(2.10.1) K+(x, T ) = sup
U

lim sup
n→∞

min{K(w)

n
: w ∈ C(x, n)}

and

(2.10.2) K−(x, T ) = sup
U

lim inf
n→∞

min{K(w)

n
: w ∈ C(x, n)}.

Theorem 2.10.1 (Brudno [41], White [183,184]). If µ is an ergodic invariant measure on (X,T ), then

(2.10.3) K+(x, T ) = K−(x, T ) = hµ(X,T ) a.e. dµ(x).

Brudno showed that K+(x, T ) = hµ(X,T ) a.e. for every ergodic measure µ on (X,T ). He also noted
that attempting to use finite measurable partitions α instead of open covers,

(2.10.4) sup
α

lim sup
n→∞

K(αn−1
0 (x))

n
,

gives ∞ for all nonperiodic points x ∈ X.

White also explains how ingredients of the proofs, some going back to Brudno and even Kolmogorov,
produce a universal coding scheme: an effective (achievable by a Turing machine) algorithm for coding
any finite-state ergodic stationary source that almost surely achieves a long-term data compression rate
equal to the entropy of the source (the best possible). Lempel-Ziv, Wyner-Ziv, Ornstein-Shields, etc.
have also produced universal coding schemes.





Part 3

Counting patterns

A complexity function px(n) counts the number of patterns of “size” n that appear in an object x under
investigation. One of the simplest situations (one might suppose) is that of a one-dimensional sequence
u on a finite alphabet A. If u is a sequence or bisequence, the complexity function of u, denoted pu,
maps n to the number of blocks of length n that appear in u. If X is a subshift, then pX(n) is the
number of blocks of length n that appear in L(X). In higher-dimensional symbolic dynamical systems
one may count the number of configurations seen in rectangular regions, and in tilings one may count
the number of patches of tiles of a fixed size that are equivalent under translations, or, if preferred, under
translations and rotations. The asymptotic exponential growth rate of the complexity function,

(3.0.1) lim sup
n→∞

log px(n)

n
,

is a single number that measures the complexity of x in one sense, while the function px itself is a precise
measurement of how the complexity or richness of the object grows with size. There is a huge literature
on complexity functions of various kinds for various structures; see for example [4, 19, 75, 78, 137]. Here
we look at a few representative examples.

Exercise 3.0.1. [75] Show that the growth rate of the complexity function pX of a subshift (X,σ) is
an invariant of topological conjugacy by proving that if (X,σ) and (Y, σ) are topologically conjugate
subshifts on finite alphabets, then there is a constant c such that

(3.0.2) pX(n− c) ≤ pY (n) ≤ pX(n+ c) for all n > c.

3.1 The complexity function in one-dimensional symbolic dynamics

Let u be a one or two-sided infinite sequence on a finite alphabet A, and let pu(n) denote the number
of n-blocks in u. Since every block continues in at least one direction, pu(n+ 1) ≥ pu(n) for all n.

Exercise 3.1.1. Find the complexity functions of the bisequence u = . . . 121232121 . . . and the one-sided
sequence v = 321212121 . . . .

Hedlund and Morse [143, Theorems 7.3 and 7.4] showed that a two-sided sequence u is periodic if
and only if there is a k such that pu(k + 1) = pu(k), equivalently if and only if there is an n such that
pu(n) ≤ n.

Exercise 3.1.2. Show that for one-sided sequences u the following conditions are equivalent: (1) there
is an n such that pu(n) ≤ n;
(2) there is a k such that pu(k + 1) = pu(k).
(3) u is eventually periodic;
(4) pu is bounded.
(Hint: For (2) implies (3), note that each k-block in u must have a unique right extension to a (k + 1)-
block, and that some k-block must appear at least twice in u.)

25
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Exercise 3.1.3. Show that for a two-sided sequence u, if there is an n such that pu(n) ≤ n, then u is
periodic.

3.2 Sturmian sequences

Hedlund and Morse [144] defined Sturmian sequences as those that have the smallest possible complexity
among non-eventually-periodic sequences.

Definition 3.2.1. A sequence u is called Sturmian if it has complexity pu(n) = n+ 1 for all n.

If u is Sturmian, then pu(1) = 2. This implies that Sturmian sequences are over a two-letter alphabet.
For the duration of this discussion on Sturmian systems, we fix the alphabet A = {0, 1}.

Exercise 3.2.1. The Fibonacci substitution is defined by:

φ : 0 7→ 01

1 7→ 0.

The fixed point f = 0100101001001010010100100101... of the Fibonacci substitution is called the Fi-
bonacci sequence. Show that f is a Sturmian sequence.

Definition 3.2.2. A set S of blocks is balanced if for any pair of blocks u, v of the same length in S,
||u|1 − |v|1| ≤ 1, where |u|1 is the number of occurrences of 1 in u and |v|1 is the number of occurences
of 1 in v.

It immediately follows that if a sequence u is balanced and not eventually periodic then it is Sturmian.
This is a result of the fact that if u is aperiodic, then pu(n) ≥ n+ 1 for all n, and if u is balanced then
pu(n) ≤ n+ 1 for all n. In fact, it can be proved that a sequence u is balanced and aperiodic if and only
if it is Sturmian [137]. Furthermore, it immediately follows that any shift of a Sturmian sequence is also
Sturmian.

Sturmian sequences also have a natural association to lines with irrational slope. To see this, we
introduce the following definitions.

Definition 3.2.3. Let α and β be real numbers with 0 ≤ α, β ≤ 1. We define two infinite sequences
xα,β and x′α,β by

(xα,β)n = bα(n+ 1) + βc − bαn+ βc
(x′α,β)n = dα(n+ 1) + βe − dαn+ βe

for all n ≥ 0. The sequence xα,β is the lower mechanical sequence and x′α,β is the upper mechanical
sequence with slope α and intercept β.

The use of the words slope and intercept in the above definitions stems from the following graphical
interpretation. Consider the line y = αx + β. The points with integer coordinates that sit just below
this line are Fn = (n, bαn + βc). The straight line segment connecting two consecutive points Fn and
Fn+1 is horizontal if xα,β = 0 and diagonal if xα,β = 1. Hence, the lower mechanical sequence can be
considered a coding of the line y = αx + β by assigning to each line segment connecting Fn and Fn+1

a 0 if the segment is horizontal and a 1 if the segment is diagonal. Similarly, the points with integer
coordinates that sit just above this line are F ′n = (n, dαn+ βe). Again, we can code the line y = αx+ β
by assigning to each line segment connecting F ′n and F ′n+1 a 0 if the segment is horizontal and a 1 if the
segment is diagonal. This coding yields the upper mechanical sequence [137].
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The sequence xα,β codes the forward orbit of β ∈ [0, 1) under the translation x→ x+ α mod 1 with
respect to the partition A = [0, 1− α), Ac = [1− α, 1): xα,β = 0 if β + nα ∈ A, xα,β = 1 if β + nα ∈ Ac;
and the sequence x′α,β codes the orbit of β with respect to the partition B = (0, 1− α], Bc = (1− α, 1].

A mechanical sequence is rational if the line y = αx+β has rational slope and irrational if y = αx+β
has irrational slope. In [137] it is proved that a sequence u is Sturmian if and only if u is irrational
mechanical. In the following example we construct a lower mechanical sequence with irrational slope,
thus producing a Sturmian sequence.

Example 3.2.4. Let α = 1/τ2, where τ = (1 +
√

5)/2 is the golden mean, and β = 0. The lower
mechanical sequence xα,β is constructed as follows:

(xα,β)0 =b1/τ2c = 0

(xα,β)1 =b2/τ2c − b1/τ2c = 0

(xα,β)2 =b3/τ2c − b2/τ2c = 1

(xα,β)3 =b4/τ2c − b3/τ2c = 0

(xα,β)4 =b5/τ2c − b4/τ2c = 0

(xα,β)5 =b6/τ2c − b5/τ2c = 1

...

Further calculation shows that xα,β = 0010010100... = 0f . Note that a similar calculation gives x′α,β =
1010010100... = 1f, hence the Fibonacci sequence is a shift of the lower and upper mechanical sequences
with slope 1/τ2 and intercept 0.

Exercise 3.2.2. Show that while Sturmian sequences are aperiodic, they are syndetically recurrent:
every block that occurs in a Sturmian sequence occurs an infinite number of times with bounded gaps.

As a result of the preceding Exercise, any block in Ln(u) appears past the initial position and can thus
be extended on the left. Since there are n + 1 blocks of length n, it must be that exactly one of them
can be extended to the left in two ways.

Definition 3.2.5. In a Sturmian sequence u, the unique block of length n that can be extended to the
left in two different ways is called a left special block, and is denoted Ln(u). The sequence l(u) which
has the Ln(u)’s as prefixes is called the left special sequence or characteristic word of X+

u [78, 137].

In a similar fashion, we define the right special blocks of Ln(u).

Definition 3.2.6. In a Sturmian sequence u, the unique block of length n that can be extended to
the right in two different ways is called a right special block, and is denoted Rn(u). The block Rn(u) is
precisely the reverse of Ln(u) [78].

We now address how to determine the left special sequence in a Sturmian system.

Since every Sturmian sequence u is irrational mechanical, there is a line with irrational slope α asso-
ciated to u. We use this α to determine the left special sequence of X+

u .

Let (d1, d2, ..., dn, ...) be a sequence of integers with d1 ≥ 0 and dn > 0 for n > 1. We associate a
sequence (sn)n≥−1 of blocks to this sequence by

s−1 = 1, s0 = 0, sn = sdnn−1sn−2.

The sequence (sn)n≥−1 is a standard sequence, and (d1, d2, ..., dn, ...) is its directive sequence. We can
then determine the left special sequence of X+

u with the following proposition stated in [137].
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Proposition 3.2.7. Let α = [0, 1 + d1, d2, ....] be the continued fraction expansion of an irrational α
with 0 < α < 1, and let (sn) be the standard sequence associated to (d1, d2, ...). Then every sn, n ≥ 1,
is a prefix of l and

l = lim
n→∞

sn.

This is illustrated in the following two examples.

Example 3.2.8. Let α = 1/τ2, where τ = (1 +
√

5)/2 is the golden mean. The continued fraction
expansion of 1/τ2 is [0, 2, 1]. By the above proposition d1 = 1, d2 = 1,
d3 = 1, d4 = 1, .... The standard sequence associated to (d1, d2, ...) is constructed as follows:

s1 =sd10 s−1 = 01

s2 =sd21 s0 = 010

s3 =sd32 s1 = 01001

s4 =sd43 s2 = 01001010

...

Continuing this process, the left special sequence of X+
u , where u is a coding of a line with slope 1/τ2, is

l = 010010100100101001... = f.

It follows that the left special sequence of X+
f is f .

3.3 Episturmian sequences

Sturmian sequences have many equivalent definitions and characterizations as well as many amazing
properties. Some of the properties allow generalization to sequences on alphabets of more than two
symbols. Episturmian sequences were defined in [68] as follows. The right palindrome closure of a block
B is the unique shortest palindrome which has B as a prefix.

Definition 3.3.1. A one-sided sequence u is standard episturmian if the right palindrome closure of
every prefix of u is also a prefix of u. A sequence v is episturmian if there is a standard episturmian
sequence u such that L(v) = L(u) .

Exercise 3.3.1. Prove that every Sturmian sequence is episturmian.

Exercise 3.3.2. Prove that every episturmian sequence is syndetically recurrent.

We say that an infinite sequence u is closed under reversals if for each subblock B = b1 . . . bn of u,
its reversal B′ = bn . . . b1 is also a subbblock of u. Recall that a right-special subblock of an infinite
sequence u is a subblock B of u that has two distinct continuations: there are symbols b, c ∈ A with
b 6= c and both Bb and Bc appearing in u as subblocks.

Theorem 3.3.2. [68]A one-sided sequence u is episturmian if and only if it is closed under reversals
and for each n ≥ 1 it has at most one right-special subbblock of length n.

For a review of properties of episturmian sequences, including their complexity, see [85].
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3.4 The Morse sequence

The Morse sequence, more properly called the Prouhet-Thue-Morse sequence, is the fixed point

ω = 0110100110010110....

of the substitution 0→ 01, 1→ 10. The complexity function of the Morse sequence is more complicated
than that of the Fibonacci sequence. For the Morse sequence, pω(1) = 2, pω(2) = 4, and, for n ≥ 3, if
n = 2r + q + 1, r ≥ 0, 0 < q ≤ 2r, then

pω(n) =

{
6(2r−1) + 4q if 0 < q ≤ 2r−1

8(2r−1) + 2q if 2r−1 < q ≤ 2r.

The complexity function of the Morse sequence is discussed in more detail in [78, Chapter 5]

3.5 In higher dimensions, tilings, groups, etc.

The complexity of configurations and tilings in higher-dimensional spaces and even groups is an area
of active investigation. A central question has been the possibility of generalizing the observation of
Hedlund and Morse (Exercise 3.1.2) to higher dimensions: any configuration of low enough complexity,
in some sense, should be eventually periodic, in some sense. A definite conjecture in this direction
was stated in 1997 by M. Nivat in a lecture in Bologna (see [72]): For a d-dimensional configuration
x : Zd → A on a finite alphabet A, define its rectangular complexity function to be the function
Px(m1, . . . ,md) which counts the number of different m1 × · · · ×md box configurations seen in x. The
Nivat Conjecture posits that if x is a two-dimensional configuration on a finite alphabet for which there
exist m1,m2 ≥ 1 such that Px(m1,m2) ≤ m1m2, then x is periodic: there is a nonzero vector w ∈ Z2

such that x(v + w) = x(v) for all v ∈ Z2.

Cassaigne [48] characterized all two-dimensional configurations with complexity function Px(m1,m2) =
m1m2 + 1.

Vuillon [180] considered tilings of the plane generated by a cut-and-project scheme. Recall (see [9]) that
Sturmian sequences code (according to the two possible tile=interval lengths) tilings of a line obtained
by projecting onto it the points in the integer lattice that are closest to it along another, transverse,
line. Vuillon formed tilings of the plane with three types of diamonds by projecting onto a plane points
of the cubical lattice in Z3 and proved that the number of different m×n parallelograms is mn+m+n.

Berthé and Vuillon [21] showed that these two-dimensional configurations code the Z2 action of two
translations on the circle. By applying a one-block code from the three-letter alphabet to a two-letter
alphabet, they produced for each m and n a two-dimensional configuration which is syndetically recurrent
and is not periodic in any rational direction but has the relatively low rectangular complexity function
P (m,n) = mn + n. Two-dimensional configurations with this complexity function were characterized
in [20].

Sander and Tijdeman [169–171] studied the complexities of configurations x : Zd → {0, 1} in terms of
the number of distinct finite configurations seen under a sampling window. Let A = {a1, . . . , an}, each
ai ∈ Zd, be a fixed non-empty sampling window, and define

(3.5.1) Px(A) = card{(x(v + a1), . . . , x(v + an)) : v ∈ Zd}

to be the number of distinct A-patterns in x (written here as ordered |A|-tuples). A natural extension
of (3.1.2) might be that if there is a nonempty set A ⊂ Zd for which Px(A) ≤ |A|, then x must be
periodic: there is a w ∈ Z \ {0} such that x(v + w) = x(v) for all v ∈ Z. Sander and Tijdeman proved
the following.
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1. If Px(A) ≤ |A| for some A ⊂ Zd with |A| ≤ 3, then x is periodic.

2. In dimension 1, the observation of Hedlund and Morse generalizes from sampling windows that are
intervals to arbitrary sampling windows: If x ∈ {0, 1}Z satisfies Px(A) ≤ |A| for some (non-empty)
sampling window A, then x is periodic.

3. There are a non-periodic two-dimensional configuration x : Z2 → {0, 1} and a sampling window
A ⊂ Z2 of size |A| = 4 such that Px(A) = 4 = |A|.

4. Conjecture: If A ⊂ Z2 is a (non-empty) sampling window that is the restriction to Z2 of a convex
subset of R2 and x : Z2 → {0, 1} satisfies Px(A) ≤ |A|, then x is periodic.

5. If there is a sampling window A ⊂ Z2 that consists of all points in a rectangle (with both sides
parallel to the coordinate axes) with one side of length 2, and Px(A) ≤ |A|, then x is periodic.

6. In dimension 3 and above, there are rectangular box sampling windows A with sides parallel to
the coordinate axes and nonperiodic configurations x with Px(A) ≤ |A|.

The last statement above was recently improved by Cyr and Kra [60]: If there is a sampling window A
that consists of all points in a rectangle (with both sides parallel to the coordinate axes) with one side
of length 3, and Px(A) ≤ |A|, then x is periodic.

Kari and Szabados [114] (see also [113]) represented configurations in Zd as formal power series in d
variables with coefficients from A and used results from algebraic geometry to study configurations in
Zd which have low complexity in the sense that for some sampling windows A they satisfy Px(A) ≤ |A|.
They proved that in dimension two any non-periodic configuration x can satisfy such an estimate for
only finitely many rectangular sampling windows A.

Epifanio, Koskas, and Mignosi [72] made some progress on the Nivat Conjecture by showing that if x
is a configuration on Z2 for which there exist m,n ≥ 1 such that Px(m,n) < mn/144, then x is periodic.
The statement was improved by Quas and Zamboni [160] by combinatorial and geometrical arguments
to replace 1/144 by 1/16, and by Cyr and Kra [58] by arguments involving subdynamics to replace it
by 1/2.

We do not give definitions of all the terminology associated with tilings and tiling dynamical systems—
see for example [79,162,174] for background. For a tiling x of Rd that has finite local complexity, one may
define its complexity function Px(r) to be the number of different patches (identical up to translation,
or perhaps translation and rotation) seen in x within spheres of radius r. In analogy with Exercise 3.0.1
for subshifts, Frank and Sadun [156] and A. Julien [108] (see also [107]) showed that if two minimal
tiling dynamical systems are aperiodic and have finite local complexity, then their complexity functions
are equivalent—within bounded multiples of each other up to bounded translations (or dilations—see
the cited papers for precise statements).

The investigation of the complexity function and the calculation or even estimation of entropy are
extending to subshifts on groups (see for example [10,154]) and even on trees [11,12,14].

Analogues of the Nivat Conjecture for general Delaunay sets in Rd were proved by Lagarias and
Pleasants [130,131]. Huck and Richard [104] estimate the pattern entropy of “model sets” (certain point
sets that result from cut and project schemes) in terms of the size of the defining window.

Durand and Rigo [71] proved a reformulation of Nivat’s Conjecture by redefining periodicity and using
a different complexity function: A subset E ⊂ Zd is “definable in Presburg arithmetic (Z;<,+)” if and
only if the number RE(n) of different blocks that appear infinitely many times in E is O(nd−1) and
“every section is definable in (Z;<,+)”. We do not attempt to explain the terminology here, but just
note that the subsets of N definable in (N;<,+) correspond exactly to the eventually periodic sequences,
so the theorem of Durand and Rigo may be regarded as an extension of the Hedlund-Morse theorem to
all dimensions.
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3.6 Topological complexity

Let (X,T ) be a topological dynamical system. If (X,T ) is a subshift and U is the time-0 cover (also
partition) consisting of the cylinder sets determined by fixing a symbol at the origin, then the complexity
function pX(n) (which by definition is the number of distinct n-blocks in all sequences in the system) is the
minimal possible cardinality of any subcover of Un−1

0 = U ∨T−1U ∨· · ·∨T−n+1U ; i.e., in this case pX(n)
equals the N(Un−1

0 ) of the definition of topological entropy (see Sections 3.1 and 2.1). Blanchard, Host,
and Maass [25] took this as the definition of the topological complexity function: pU (n) = N(Un−1

0 ) =
the minimum possible cardinality of a subcover of Un−1

0 .

Theorem 3.6.1. [25] A topological dynamical system is equicontinuous if and only if every finite open
cover has bounded complexity function. (Cf. Sections 3.1 and 3.13.)

Exercise 3.6.1. Discuss this theorem in relation to a Sturmian subshift and the irrational translation
on [0, 1] of which it is an almost one-to-one extension.

They also related the complexity function to concepts of mixing and chaos.

Definition 3.6.2. A topological dynamical system is scattering if every covering by non-dense open sets
has unbounded complexity function. It is 2-scattering if every covering by two non-dense open sets has
unbounded complexity function.

The following results are from [25].

1. Every topologically weakly mixing system is scattering.

2. For minimal systems, 2-scattering, scattering, and topological weak mixing are equivalent.

3. If every non-trivial closed cover U of X has complexity function satisfying pU (n) ≥ n+ 2 for all n,
then (X,T ) is topologically weakly mixing.

4. If (X,T ) has a point of equicontinuity, then there exists an open cover U of X with pU (n) ≤ n+ 1
for all n.

5. A system is scattering if and only if its Cartesian product with every minimal system is transitive.

6. Every scattering system is disjoint from every minimal distal system. (Recall that (X,T ) and
(Y, S) are disjoint if the only closed invariant subset of their Cartesian product that projects onto
both X and Y is all of X × Y .)

The topological complexity of nilsystems has been studied for example in [64,98,157].

3.7 Low complexity, the number of ergodic measures, automorphisms

Irrational translations on the unit interval and their generalizations to interval exchanges have natural
codings as subshifts on finite alphabets which have low complexity and a small number of ergodic
measures. A subshift (X,σ) is said to have minimal block growth if there is a constant c <∞ such that
its complexity function pX(n) = |Ln(X)| satisfies pX(n) − n < c for all n. Such subshifts were studied
and characterized by Coven and Hedlund [53], Coven [52], and Paul [150].

Cassaigne [46,47] proved that a sequence u satisfies pu(n) ≤ Kn for some constant K and all n if and
only if the sequence pu(n+ 1)−pu(n) is bounded. Rote [164] constructed sequences with pu(n) = 2n for
all n and proved that a sequence u on {0, 1} has complexity function pu(n) = 2n and language closed
under switching 0 and 1 if and only if its difference sequence un+1 − un mod 2 is Sturmian.

The coding of an exchange of r intervals satisfies pX(n) = (r − 1)n + 1 for all n (generalizing the
Sturmian case, when r = 2). Veech [177] and Katok [116] showed independently that an exchange of r
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intervals has at most br/2c ergodic measures. Boshernitzan [32] showed that a general minimal subshift
with linear block growth has a bounded number of ergodic measures. Denoting by E (X,σ) the set of
ergodic invariant Borel probability measures on (X,σ), his main results are as follows:

1. If lim inf
pX(n)

n
= α, then |E (X,σ)| ≤ α.

2. If there is an integer K ≥ 3 such that lim sup
pX(n)

n
< K, then |E (X,σ)| ≤ K − 2.

3. If there is a real α ≥ 2 such that lim sup
pX(n)

n
= α, then |E (X,σ)| ≤ bαc − 1.

Exercise 3.7.1. Show that (2) implies (3).

Exercise 3.7.2. Show that for a (primitive, proper) substitution θ : A→ A∗ (A∗ is the set of all blocks
on the alphabet A) that defines a minimal subshift (Xθ, σ) as the orbit closure of a sequence fixed under
θ, the complexity function pX satisfies pX(n) ≤ Kn for all n, where K = max{|K(a)| : a ∈ A}.

Cyr and Kra [55] showed that these results of Boshernitzan are sharp by constructing for each integer
d ≥ 3 a minimal subshift (X,σ) for which

(3.7.1) lim inf
pX(n)

n
= d, lim sup

pX(n)

n
= d+ 1, and |E (X,σ)| = d.

Damron and Fickenscher [62] considered minimal subshifts with eventually constant block growth: there
are constant K and n0 such that

(3.7.2) pX(n+ 1)− pX(n) = K for all n ≥ n0, equivalently pX(n) = Kn+ C for all n ≥ n0.

This condition is satisfied by codings of interval exchanges but is stronger than linear block growth. They
improved Boshernitzan’s bound (of K−1) for this smaller class of subshifts by showing that if a minimal
subshift (X,σ) has eventually constant block growth with constant K ≥ 4, then |E (X,σ)| ≤ K − 2.
The proof involved careful study of the frequencies of blocks and the relation between Rauzy graphs for
n-blocks and for (n+ 1)-blocks.

There is recent activity showing that if the complexity function pX(n) of a minimal subshift (X,σ)
grows slowly, then there are not very many automorphisms (shift-commuting homeomorphisms) of the
system. This is in contrast to nontrivial mixing shifts of finite type, for which the automorphism group is
huge [38,94]. The papers of Coven [51], Olli [147], Salo-Törmä [168], Coven-Quas-Yassawi [54], Donoso-
Durand-Maass-Petite [65], and Cyr-Kra [57] contain such results. In the latter two papers it is proved
that if

(3.7.3) lim inf
n→∞

pX(n)

n
<∞,

then the automorphism group of (X,σ) is virtually Z, meaning that its quotient by the subgoup generated
by σ is a finite group.

The recent paper of Cyr and Kra [59] shows that if pX has stretched exponential growth in the sense
that there is β < 1/2 such that

(3.7.4) lim sup
n→∞

log pX(n)

nβ
= 0,

then the automorphism group of (X,σ) is amenable. (The linear and quadratic complexity cases are
discussed in [56,57]).

The recent paper of Salo [167] gives an example of a minimal subshift (X,σ) for which pX(n) =
O(n1.757) (subquadratic complexity), and the automorphism group is not finitely generated.
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3.8 Palindrome complexity

A palindrome is a block B = b1 . . . bn which reads the same forwards as backwards: denoting by B′ =
bn . . . b1 the reversal of B, we have B′ = B. For a (one or two-sided) sequence u and each n ≥ 0
we denote by Palu(n) the number of n-palindromes (palindromes of length n) in u. (We may define
Palu(0) = Palu(1) = 1.) For a language L, PalL(n) denotes the number of n-palindromes in L, and for a
subshift (X,σ), PalX(n) denotes the number of n-palindromes in L(X), i.e. the number of palindromes
of length n found among all sequences in X. For any α, denote by Palα the sum of Palα(n) over all n.

Besides the inherent combinatorial interest of finding palindromes and estimating how many occur,
such knowledge may have applications elsewhere, for example in mathematical physics, as explained
in [5]. Let A be a finite alphabet and f : A→ R a one-to-one “potential function”. Let u be a sequence
on A. Then the one-dimensional discrete Schrödinger operator Hu acting on l2(Z) is defined by

(3.8.1) (Huφ)(n) = φ(n− 1) + φ(n+ 1) + f(un)φ(n) for all n ∈ Z.

It is thought that the nature of the spectrum of Hu can indicate behavior of a material (perhaps a
quasicrystal) described by the sequence u. Absolutely continuous spectrum (with respect to Lebesgue
measure) might indicate behavior similar to a conductor, pure point spectrum might indicate insulating
behavior, and singular continuous spectrum might be more interesting than either of the others.

Theorem 3.8.1. [97] Let u be a sequence on a finite alphabet whose orbit closure (O(u), σ) is strictly
ergodic and infinite and which contains arbitrarily long palindromes, i.e. Palu(n) is not eventually 0.
Then for uncountably many x ∈ O(u), the operator Hx has purely singular continuous spectrum.

Exercise 3.8.1. Show that the fixed points of the Fibonacci substitution 0 → 01, 1 → 0 and Morse
substitution 0→ 01, 1→ 10 contain arbitrarily long palindromes.

It is interesting that Sturmian sequences can be characterized not just by their complexity function
(it is as small as possible for a sequence that is not eventually periodic: pu(n) = n + 1 for all n),
but also by their palindrome complexity functions. Droubay [67] showed that the fixed point of the
Fibonacci substitution satisfies the conclusion of the following theorem of Droubay and Pirillo [69]. A
generalization to two dimensions was given in [22].

Theorem 3.8.2. [69] A one-sided sequence u on a finite alphabet is Sturmian if and only if Palu(n) = 1
for all even n ≥ 2 and Palu(n) = 2 for all odd n.

Damanik and Zare [61] studied the palindorome complexity of fixed points of primitive substitutions.
Recall that the orbit closure of any such sequence is strictly ergodic, so that every block B has a uniform
frequency of occurrence Frequ(B) in u, which equals the measure of the cylinder set consisting of all
sequences that have B occurring at the origin.

Theorem 3.8.3. [61] Let u be a one-sided sequence that is a fixed point of a primitive substitution on
a finite alphabet. Then

1. Palu(n) is bounded;

2. There are constants c1 and c2 such that if B is a palindrome of length n in u, then

(3.8.2)
c1
n
≤ Frequ(B) ≤ c2

n
for all n.

The palindrome complexity function is studied for many examples in [5], where it is also proved that
if a sequence u has linear complexity function (there is a constant C such that pu(n) ≤ Cn for all n),
then Palu is bounded.
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Theorem 3.8.4. [5] Let u be a one-sided sequence on a finite alphabet that is not eventually periodic.
Then for all n ≥ 1,

(3.8.3) Palu(n) <
1

n
16pu

(
n+ bn

4
c
)
.

These results were generalized in [13] as follows. Recall that for a sequence u, L(u) denotes the family
of all subblocks of u. A formal language L is called closed under reversal if L′ ⊂ L.

Theorem 3.8.5. [13] Let u be a syndetically recurrent sequence on a finite alphabet.

1. If L(u) is not closed under reversal, then u does not contain arbitrarily long palindromes: Palu(n) =
0 for all sufficiently large n.

2. If L(u) is closed under reversal, then

(3.8.4) Palu(n) + Palu(n+ 1) ≤ pu(n+ 1)− pu(n) + 2 for all n.

3. Suppose that u is the natural coding of a “nondegenerate” exchange of r intervals, so that pu(n) =
n(r−1)+1 for all n. If L(u) is closed under reversal, then equality holds in the preceding estimate,
and in fact

(3.8.5) Palu(n) =

{
1 if n is even

r if n is odd.

Exercise 3.8.2. Check that Equation 3.8.5 implies that equality holds in Equation 3.8.4

The paper [86] studies blocks and sequences that contain a lot of palindromes. The following observa-
tion was made in [68].

Exercise 3.8.3. Let B be a block of length |B| = n. Show that the number of different palindromes
that are subblocks of B (including the empty block) is at most n+ 1. (Hint: Define a block B to have
Property J if there is a suffix of B that is a palindrome and appears only once in B. For x ∈ A, what
are the possibilities for PalBx, depending on whether B has property J or not? Then use induction on
the lengths of prefixes of B to show that PalB is the cardinality of the set of prefixes of B that have
property J .)

In view of the preceding observation, the authors of [86] define a finite block B to be rich if it contains
the maximum possible number, |B|+ 1, of palindromes as subblocks. An infinite sequence is defined to
be rich if every one of its subblocks is rich. (See also [7] and [40].)

Exercise 3.8.4. Prove that a block B is rich if and only if each of its prefixes has a suffix that is a
palindrome and appears exactly once in B.

Exercise 3.8.5. If B is rich then each of its subblocks is also rich.

Theorem 3.8.6. [86] A finite block or infinite sequence w is rich if and only if for every subblock B
of w, if B contains exactly two occurrences of a palindrome as a prefix and a suffix, then B is itself a
palindrome.

In [68] it is proved that every episturmian sequence is rich.

Exercise 3.8.6. Let B be a block of length n = |B| on an alphabet A of cardinality |A| = r. What is
the maximum possible cardinality of the family LB of all (different) subblocks of B?

Exercise 3.8.7. What is the minimum length L(k, r) of a block on an alphabet A of r symbols that
contains all k-blocks on A? What about configurations on r symbols in Z2?
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Exercise 3.8.8. How many rich words of length 5 are there on an alphabet of 3 letters? How many are
there of length n on an alphabet of r letters?

Exercise 3.8.9. Formulate a definition of palindrome in Z2. Does the support of a “palindrome” in Z2

have to be a rectangle? How about a definition in Zd?

3.9 Nonrepetitive complexity and Eulerian entropy

T. K. S. Moothathu [142] defined the nonrepetitive complexity function PNu of a sequence u on a finite
alphabet A in terms of how long an initial block of u could be before it contained a repeat of a subblock
of length n:

(3.9.1) PNu (n) = max{m ∈ N : ui+n−1
i 6= uj+n−1

j for all 0 ≤ i < j ≤ m− 1}.

The exponential growth rate may be called the Eulerian entropy of u, because there is a connection with
Eulerian circuits in directed graphs, and denoted by hE(u):

(3.9.2) hE(u) = lim sup
n→∞

logPNu (n)

n
.

Referring to Bowen’s definition of topological entropy in terms of separated sets (2.1), the concept
of Eulerian entropy extends to points in arbitrary topological dynamical systems (X,T ) when X is a
metric space. For a point x ∈ X, denote by β(x, n, ε) the maximum m ∈ N for which the initial orbit
segment of x of length m is an (n, ε)-separated set, so that

(3.9.3) β(x, n, ε) = max{m ∈ N : {x, Tx, . . . , Tm−1x} is (n, ε)-separated},

define the Eulerian entropy at x to be

(3.9.4) hE(X,T, x) = lim
ε→0

lim sup
n→∞

log β(x, n, ε)

n
,

and define the Eulerian entropy of the system to be

(3.9.5) hE(X,T ) = sup
x∈X

hE(X,T, x).

The exact relationships among hE(X,T, x), hE(X,T ), and htop(X,T ) are not clear, but here are some
results from [142].

1. hE(X,T ) is an invariant of topological conjugacy.

2. Let (X,σ) be a one-step mixing shift of finite type on a finite alphabet A which has a safe symbol,
a symbol s ∈ A such that for all a ∈ A both blocks as, sa ∈ L(X). Then there is a sequence x ∈ X
such that hE(X,σ, x) = htop(X,σ).

3. If (X,σ) is a mixing shift of finite type such that for all large enough n the de Bruijn graph of
(X,σ) is irreducible, then hE(X,σ, x) = htop(X,σ) for a residual set of x ∈ X. (Recall that the
de Bruijn graph of (X,σ) has for its vertices the set of (n − 1)-blocks, and there is an edge from
B to C if and only if there is an n-block that has prefix B and suffix C.)

4. There is a (nontransitive) homeomorphism T on the Cantor set X such that hE(X,T, x) <
htop(X,T ) for all x ∈ X.

Exercise 3.9.1. Construct some de Bruijn graphs for several mixing shifts of finite type. How can one
tell whether they will be irreducible for all large enough n?

Exercise 3.9.2. Determine PNu (n) and hE(u) to the extent possible when u is the fixed point of the
Fibonacci substitution, the Prouhet-Thue-Morse sequence, the Champernowne sequence, etc.



36 Part 3. Counting patterns

3.10 Mean topological dimension

The complexity function pX and most of its variants are especially useful in the case of systems that
have topological entropy zero. In a study of holomorphic and harmonic maps, M. Gromov [90] pro-
posed an invariant, which he called mean topological dimension, that is especially useful in the study
of systems with infinite entropy, such as the shift on [0, 1]Z. This invariant was studied in [136] (based
on Lindenstrauss’ Ph.D. dissertation) and used there and in subsequent papers [91, 134, 135] to settle
questions about the possibility of embedding a given topological dynamical system (X,T ) in a standard
target such as (([0, 1])d)Z, σ).

We deal with a compact metric space X and finite open covers U ,V of X. Recall that V refines U ,
written V � U , if every member of V is contained in some member of U , and the join of U and V is
U ∨ V = {U ∩ V : U ∈ U , V ∈ V}.

The dimension of a finite open cover U is defined to be

(3.10.1) D(U) = min
V�U

(
max
x∈X

∑
V ∈V

1V (x)

)
− 1,

the smallest n such that for every refinement V of U no point of X is in more than n+ 1 elements of V.
The cover dimension of the compact metric space X is D(X) = supU D(U). One can show that D(U) is
subadditive, D(U ∨ V) ≤ D(U) +D(V), and therefore the limit

(3.10.2) D(U , T ) = lim
n→∞

1

n
D
(
Un−1

0

)
= lim
n→∞

1

n
D(U ∨ T−1U ∨ · · · ∨ T−n+1U)

exists. The mean topological dimension of (X,T ) is defined to be

(3.10.3) mdim(X,T ) = sup
U
D(U , T )

and is an invariant under topological conjugacy.

Here are a few results from [134,136].

1. If D(X) <∞ or htop(X,T ) <∞, then mdim(X,T ) = 0.

2. mdim([0, 1]Z, σ) = D([0, 1]) = 1.

3. If Y ⊂ X is closed and T -invariant (TY = Y ), then mdim(Y, T ) ≤ mdim(X,T ).

4. It was an open question of J. Auslander whether every minimal topological dynamical system
(X,T ) can be embedded in ([0, 1]Z, σ) (in analogy with Beboutov’s theorem on the embedding of
R actions in C(R) with the translation action—see [109]). Because of the preceding result the
answer is negative, since for any r ∈ [0,∞] there is a minimal system (X,T ) with mdim(X,T ) = r.

5. If d ∈ N and (X,T ) is a topological dynamical system with mdim(X,T ) < d/36, then (X,T )
embeds in (([0, 1]d)Z, σ).

Exercise 3.10.1. Prove that D([0, 1]) = 1.

3.11 Amorphic complexity via asymptotic separation numbers

To measure the complexity of zero-entropy systems, in [80] the authors propose the concepts of separation
numbers and amorphic complexity. Let (X,T ) be a topological dynamical system, with X a compact
metric space. For δ > 0, n ∈ N, and points x, y ∈ X, let

(3.11.1) Sn(x, y, δ) = card{k = 0, 1, . . . , n− 1 : d(T kx, T ky) > δ}
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be the number of times that the first n iterates of x and y are separated by a distance greater than δ;
and, for ν ∈ (0, 1], define x and y to be (δ, ν)-separated if

(3.11.2) lim sup
n→∞

Sn(x, y, δ)

n
≥ ν.

A subset E ⊂ X is called (δ, ν)-separated if every pair x, y ∈ E with x 6= y is (δ, ν)-separated. The
maximum cardinality of a (δ, ν)-separated subset of X is called the (asymptotic) separation number for
distance δ and frequency ν and is denoted by Sep(δ, ν). (See also Section 2.5.)

Exercise 3.11.1. Prove that if (X,T ) is equicontinuous, then Sep(δ, ν) is uniformly bounded in δ and
ν.

For a fixed δ > 0, the upper and lower scaling rates of the separation numbers as the frequency tends
to 0 are defined to be

(3.11.3) A+(δ) = lim sup
ν→0

log Sep(δ, ν)

− log ν
and A−(δ) = lim inf

ν→0

log Sep(δ, ν)

− log ν
.

The polynomial scaling rate has been chosen as possibly the most interesting one to apply to zero-entropy
examples. And notice also that the rate is in terms of shrinking frequency instead of increasingly long
time interval as usual, since the time asymptotics were already included before.

The upper and lower amorhic complexities are defined to be

(3.11.4) A+(X,T ) = sup
δ>0

A+(δ) and A−(X,T ) = sup
δ>0

A−(δ).

If A+(X,T ) = A−(X,T ), then their common value is called the amorphic complexity of (X,T ) and is
denoted by A(X,T ).

Here are some of the results in [80].

1. If (X,T ) has positive topological entropy or is weakly mixing for some invariant measure with
nontrivial support, then Sep(δ, ν) is infinite for some values of δ, ν.

2. Recall that a minimal system (X,T ) is called almost automorphic if it is an almost one-to-one
extension (meaning that there exists a singleton fiber) of a minimal equicontinuous system [176].
If (X,T ) is almost automorphic but not equicontinuous, then Sep(δ, ν) is not uniformly bounded
in δ and ν.

3. If (X,T ) is an extension of an equicontinuous system (Y, S) with respect to a factor map π :
(X,T ) → (Y, S) such that µ{y ∈ Y : cardπ−1{y} > 1} = 0 for every invariant measure µ on Y ,
then Sep(δ, ν) <∞ for all δ, ν. (Regular Toeplitz systems provide such examples.)

4. If (X,T ) is a Sturmian subshift, then A(X,T ) = 1.

5. The set of values of A(X,T ) for regular Toeplitz systems (X,T ) is dense in [1,∞).

3.12 Inconstancy

Inspired by nineteenth-century ideas of Crofton and Cauchy on the fluctuations of curves and of M.
Mendès France [140] on the entropy or temperature of a curve, Allouche and Maillard-Teyssier [6] define
the inconstancy of a plane curve to be twice its length divided by the perimeter of its convex hull.
Mendès-France had suggested the logarithm of this quantity as the entropy of the curve. (According
to Fechner’s law in psychophysics, the magnitude of a sensation is proportional to the logarithm of the
intensity of the stimulus.) The inconstancy I(u) of a sequence u of real numbers is defined to be the
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inconstancy of the piecewise linear curve obtained by connecting the points on its graph. See [6] for the
references, interesting examples, and discussion of possible applications of inconstancy.

For sequences u0u1 . . . on the alphabet of two symbols 0 and h > 0 for which the frequencies µ[ab]
exist for all 2-blocks ab, the authors provide the following results.

1. I(u) = 1 + (
√
h2 + 1− 1)(µ[0h] + µ[h0]).

2. If d ∈ N, the inconstancy of the periodic sequence (0d1)∞ is

(3.12.1) I((0d1)∞) =
d− 1 + 2

√
2

d+ 1
.

This is largest (
√

2) for d = 1 and tends to 1 as d→∞ and the curve becomes flat.

3. For a random binary sequence, the inconstancy is (1 +
√

2)/2 = 1.207 . . . .

4. For the Prouhet-Thue-Morse sequence, the inconstancy is (1 + 2
√

2)/3 = 1.276 . . . . This follows
from the fact that µ[00] = µ[11] = 1/6, µ[01] = µ[10] = 1/3. The inconstancy of this sequence is
relatively high because it does not contain long strings (length more than two) of 0 or 1.

5. If u is a Sturmian sequence for which the frequency of 1 is α and which does not contain the block
11, then

(3.12.2) I(u) = 1 + 2(
√

2− 1)α.

Exercise 3.12.1. Show that no Sturmian sequence contains both blocks 00 and 11.

Exercise 3.12.2. Prove statements (3) and (4) above.

3.13 Measure-theoretic complexity

Ferenczi [74] has proposed upper and lower measure-theoretic complexities, P+
T and P−T , as asymptotic

growth rates of the number of d-n-ε balls needed to cover (1 − ε) of the space. A similar idea is used
in [117] for the construction of some Z2 actions and in [161], with the f rather than d metric, to show
that different Cartesian powers of the horocycle flow are not Kakutani equivalent.

Let T : X → X be an ergodic measure-preserving transformation on a probability space (X,B, µ). For
a finite (or sometimes countable) measuable partition of X and a point x ∈ X, denote by α(x) the cell
of α to which x belongs. For integers i ≤ j we denote by αji the partition T−iα ∨ . . . T−jα. The d, or
Hamming, distance between two blocks B = b1 . . . bn and C = c1 . . . cn is defined to be

(3.13.1) d(B,C) =
1

n
card{i = 1, . . . , n : bi 6= ci}.

For x ∈ X,n ∈ N, and ε > 0, the d-n-ε ball centered at x is defined to be

(3.13.2) B(α, x, n, ε) = {y ∈ X : d(αn−1
0 (x), αn−1

0 (y)) < ε}.

Define

(3.13.3)
K(α, n, ε, T ) = min{K : there are x1, . . . , xK ∈ X such that

µ
(
∪Ki=1B(α, xi, n, ε)

)
≥ 1− ε}.

Let g : N→ N be an increasing function. Define

(3.13.4)

P+
α,T ≺ g to mean lim

ε→0
lim sup
n→∞

K(α, n, ε, T )

g(n)
≤ 1 and

P+
α,T � g to mean lim

ε→0
lim sup
n→∞

K(α, n, ε, T )

g(n)
≥ 1.
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If both relations hold, we write P+
α,T ∼ g. Similar notation defines P−α,T when the lim sups are replaced

by lim infs.

The suprema over all partitions α are defined as follows. For an increasing function g : N→ N, P+
T ≺ g

means that P+
α,T ≺ g for every partition α. And P+

T � g means that for every increasing h : N→ N such
that h(n) ≤ g(n) for all large enough n and with lim suph(n)/g(n) < 1 there is a partition α such that
P+
α,T � h. Similar careful defining produces P−T . These asymptotic growth rate equivalence classes, P+

T

and P−T , are called the upper and lower measure-theoretic complexities of (X,B, µ, T ), respectively.

Ferenczi establishes the following properties of these measure-theoretic complexity “functions”.

1. If α is a generating partition, then P+
T ∼ P

+
α,T and P−T ∼ P

−
α,T .

2. P+
T and P−T are invariants of measure-theoretic isomorphism.

3. lim logP+
T (n)/n = lim logP−T (n)/n = hµ(T ), in the sense that P+

T and P−T are dominated by
en(h+ε) for every ε > 0 and dominate en(h−ε) for every ε > 0.

4. (X,B, µ, T ) is measure-theoretically isomorphic to a translation on a compact group if and only
if P+

T ≺ g for every unbounded increasing g : N → N. (Same for P−T .) This is to be compared
with the characterization of topological dynamical systems with bounded topological complexity
functions as the translations on compact groups—see Sections 3.1 and 3.6.

5. For the Morse system, P+
T ∼ 10n/3 and P−T ∼ 3n.

6. For rank one systems, P−T ≺ an2 for every a > 0.

7. For the Chacon system (the orbit closure of the fixed point of the substitution 0 → 0010, 1 → 1),
P+
T ∼ P

−
T ∼ 2n.

3.14 Pattern complexity

Kamae and Zamboni [111, 112] have defined and studied maximal pattern complexity for infinite se-
quences, which shares some features with sequence entropy (Sections 2.3 and 2.4) and average sample
complexity (Section 4.4). A pattern is defined to be a finite increasing sequence τ = τ(0)τ(1)τ(2) . . . τ(k−
1) of integers with τ(0) = 0. If u = u0u1 . . . is an infinite one-sided sequence on a finite alphabet, onee
considers the set of words seen at places in u along the pattern τ , namely

(3.14.1) Fτ (u) = {uiui+τ(1) . . . ui+τ(k−1) : i = 0, 1, 2, . . . }.

The maximal pattern complexity function of u is defined to be

(3.14.2) P ∗u (k) = sup{|Fτ (u)| : |τ | = k}, k = 1, 2, . . . .

The authors establish the following results.

1. Let u be an infinite sequence on a finite alphabet, and suppose that the weak* limit of
∑n−1
i=0 δσiu/n

exists and so defines a shift-invariant measure µ on the orbit closure X of u. Then for any sequence
S = (ti), the sequence entropy (see Section 2.3) is bounded in terms of the maximal pattern
complexity: with α the usual time-0 partition of X,

(3.14.3) hSµ(α, σ) ≤ lim sup
k→∞

logP ∗u (k)

k
.

Hence, if (X,σ, µ) does not have purely discrete spectrum, the maximal pattern complexity finction
P ∗u (k) has exponential growth rate.

2. If there exists k such that P ∗u (k) < 2k, then u is eventually periodic (cf. Exercise 3.1.2).
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3. For Sturmian (and generalized Sturmian) sequences, P ∗u (k) = 2k for all k.

4. For the Prouhet-Thue-Morse sequence, P ∗u (k) = 2k for all k.

Further developments concerning pattern complexity, including possible applications to image recog-
nition, can be found in [76,110,186] and their references.

Exercise 3.14.1. The window complexity function Pwu (n) of an infinite sequence u on a finite alphabet
A, studied in [49], counts the number of different blocks of length n seen in the sequence u beginning at
coordinates that are multiples of n:

(3.14.4) Pwu (n) = card{uknukn+1 . . . u(k+1)n−1 : k ≥ 0}.

In the spirit of pattern complexity, one could also consider counting blocks of length n that appear in a
sequence u along an arithmetic progression of coordinates:

(3.14.5) P au (n) = card{uiui+kui+2k . . . ui+(n−1)k : i ≥ 0, k ≥ 1}.

Discuss the relationships among the ordinary complexity function pu (Section 3.1), Pwu , P au , and P ∗u .
Compute them for Sturmian sequences and the Prouhet-Thue-Morse sequence.

Exercise 3.14.2. Consider the Oldenburger-Kolakoski sequence

(3.14.6) ω = 122112122122112 . . . ,

which coincides with its sequence of run lengths. Can you say anything about any measure of complexity
for this sequence? Anything about its orbit closure as a subshift? (It seems to be an open problem
whether the frequency of 1 exists, although numerical studies show that it seems to be 1/2. So finding
any invariant measure that it defines could be difficult... )

What about a sequence on the alphabet {2, 3} that has the same self-similarity property?

Or consider all such sequences on {1, 2, 3}? Since now some choices seem possible, the orbit closure
should have positive topological entropy?



Part 4

Balancing freedom and interdependence

4.1 Neurological intricacy

In any system that consists of individual elements there is a tension between freedom of action of
the individuals and coherent action of the entire system. There is maximum complexity, information,
disorder, or randomness when all elements act independently of one another. At the other extreme, when
the elements of the system are strongly linked and the system acts essentially as a single unit, there is
maximum order. In the first situation, it seems that there is little advantage to the individual elements
in being part of a larger system, and the system does not benefit from possible concerted action by its
constituents. In the second situation, most individual elements could be superfluous, and the system
does not benefit from any diversity possibly available from its parts. This tension between the one and
the many, the individual and the state, the soloist and the orchestra, the part and the whole, is ancient
and well known.

It is natural to think that evolving organisms or societies may seek a balance in which the benefits of
diversity and coherence are balanced against their disadvantages. Abrams and Panaggio [1] constructed
a differential equations model to describe the balance between competitive and cooperative pressures to
attempt to explain the prevalence of right-handedness in human populations. (Left-handers may have
an advantage in physical competitions, where opponents are accustomed to face mostly right-handers,
and the population as a whole may benefit from diversity. But left-handers will be at a disadvantage
when faced with objects and situations designed for the comfort of the prevalent right-handers.) Blei [27]
defined measures of interdependence among families of functions in terms of functional dependence among
subfamilies using combinatorics, functional analysis, and probability.

Neuroscientists G. Edelman, O. Sporns, G. Tononi [175] proposed a measure, which they called “neural
complexity”, of the balance between specific and mass action in the brains of higher vertebrates. High
values of this quantity are associated with non-trivial organization of the network; when this is the case,
segregation coexists with integration. Low values are associated with systems that are either completely
independent (segregated, disordered) or completely dependent (integrated, ordered). We will see that
beneath this concept of intricacy there is another (new) basic notion of complexity, that we call average
sample complexity. The definitions and study of intricacy and average sample complexity in dynamics
were initiated in [153,185].

One considers a model that consists of a family X = {Xi : i = 0, 1, . . . , n − 1} of random variables
representing an isolated neural system with n elementary components (maybe groups of neurons), each
Xi taking values in a discrete (finite or countable) set E. For each n ∈ N we define n∗ = {0, 1, . . . , n−1}.
The set n∗ represents the set of sites, and E represents the set of states. It may seem that we are assuming
that the brain is one-dimensional, but not so: the sites may be arranged in some geometrically important
way, but at this stage we only number them and will take the geometry, distances, connections, etc. into
account maybe at some later stage. The elements of the set E (often E = {0, 1}) may encode (probably
quantized) levels of excitation or something analogous. For S ⊂ n∗, XS = {Xi : i ∈ S}, Sc = n∗ \ S.
Neural complexity measures the level of interdependence between action at the sites in S and those in
Sc, averaged over all subset S of the set of sites, with some choice of weights.

41
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The entropy of a random variable X taking values in a discrete set E is

H(X) = −
∑
x∈E

Pr{X = x} logPr{X = x}.

The mutual information between two random variables X and Y over the same probability space
(Ω,F , P ) is

MI(X,Y ) = H(X) +H(Y )−H(X,Y ).

= H(X)−H(X|Y ) = H(Y )−H(Y |X)

Here (X,Y ) is the random variable on Ω taking values in E × E defined by (X,Y )(ω) = (X(ω), Y (ω)).
MI(X,Y ) is a measure of how much Y tells about X (equivalently, how much X tells about Y ).
MI(X,Y ) = 0 if and only if X and Y are independent.

The neural complexity, CN , of the family X = {Xi : i = 0, 1, . . . , n− 1} is defined to be the following
average, over all subfamilies XS = {Xi : i ∈ S}, of the mutual information between XS and XSc :

CN (X) =
1

n+ 1

∑
S⊂n∗

1(
n
|S|
)MI(XS , XSc).

The weights are chosen to be uniform over all subsets of the same size, and then uniform over all sizes.

J. Buzzi and L. Zambotti [43] studied neural complexity in a general probabilistic setting, considering it
as one of a family of functionals on processes that they called intricacies, allowing more general systems
of weights for the averaging of mutual informations. They define a system of coefficients, cnS , to be a
family of numbers satisfying for all n ∈ N and S ⊂ n∗

1. cnS ≥ 0;

2.
∑
S⊂n∗ cnS = 1;

3. cnSc = cnS .

For a fixed n ∈ N let X = {Xi : i ∈ n∗} be a collection of random variables all taking values in the
same finite set. Given a system of coefficients, cnS , the corresponding mutual information functional,
Ic(X), is defined by

Ic(X) =
∑
S⊂n∗

cnSMI(XS , XSc).

Definition 4.1.1. An intricacy is a mutual information functional satisfying:

1. Exchangeability: invariance under permutations of n∗;

2. Weak additivity: Ic(X,Y ) = Ic(X) +Ic(Y ) for any two independent systems X = {Xi : i ∈ n∗} and
Y = {Yj : j ∈ m∗}.

Theorem 4.1.2 (Buzzi-Zambotti). Let cnS be a system of coefficients and Ic the associated mutual
information functional. Ic is an intricacy if and only if there exists a symmetric probability measure λc
on [0, 1] such that

cnS =

∫
[0,1]

x|S|(1− x)n−|S|λc(dx)

Example 4.1.3. 1. cnS =
1

(n+ 1)

1(
n
|S|
) (Edelman-Sporns-Tononi);

2. For 0 < p < 1,

cnS =
1

2
(p|S|(1− p)n−|S| + (1− p)|S|pn−|S|) (p-symmetric);
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3. For p = 1/2, cnS = 2−n (uniform).

Exercise 4.1.1. Prove that the neural (Edelman-Sporns-Tononi) weights correspond to λ being Lebesgue
measure on [0, 1].

4.2 Topological intricacy and average sample complexity

Let (X,T ) be a topological dynamical system and U an open cover of X. Given n ∈ N and a subset
S ⊂ n∗ define

US =
∨
i∈S

T−iU .

Definition 4.2.1. [153,185] Let cnS be a system of coefficients. Define the topological intricacy of (X,T )
with respect to the open cover U to be

Int(X,U , T ) := lim
n→∞

1

n

∑
S⊂n∗

cnS log

(
N(US)N(USc)

N(Un∗)

)
.

Applying the laws of logarithms and noting the symmetry of the sum with respect to sets S and their
complements leads one to define the following quantity.

Definition 4.2.2. [153, 185] The topological average sample complexity of T with respect to the open
cover U is defined to be

Asc(X,U , T ) := lim
n→∞

1

n

∑
S⊂n∗

cnS logN(US).

Proposition 4.2.3. Int(X,U , T ) = 2 Asc(X,U , T )− htop(X,U , T ).

Theorem 4.2.4. The limits in the definitions of Int(X,U , T ) and Asc(X,U , T ) exist .

As usual this follows from subadditivity of the sequence

(4.2.1) bn :=
∑
S⊂n∗

cnS logN(US)

and Fekete’s Subadditive Lemma: For every subadditive sequence an, limn→∞ an/n exists and is equal
to infn an/n.

Exercise 4.2.1. Prove Fekete’s Lemma.

Proposition 4.2.5. For each open cover U , Asc(X,U , T ) ≤ htop(X,U , T ) ≤ htop(X,T ), and hence
Int(X,U , T ) ≤ htop(X,U , T ) ≤ htop(X,T ).

In particular, a dynamical system with zero (or relatively low) topological entropy (one that is coherent
or ordered) has zero (or relatively low) topological intricacy.

The intricacy of a subshift (X,σ) with respect to the “time zero open cover” U0 by cylinder sets defined
by the first (or central) coordinate is determined by counting the numbers of different blocks that can
be seen along specified sets of coordinates:

Int(X,U0, σ) = lim
n→∞

1

n

∑
S⊂n∗

cnS log

(
|LS(X)||LSc(X)|
|Ln∗(X)|

)
Example 4.2.6 (Computing |LS(X)| for the golden mean SFT). Let n = 3, so that n∗ = {0, 1, 2}. The
following figure shows how different numbers of blocks can appear along different sets of coordinates of
the same cardinality: if S = {0, 1} then N(S) = 3, whereas if S = {0, 2}, N(S) = 4.
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S = {0, 1}

0 0
0 1
1 0

S = {0, 2}

0 0
0 1
1 0
1 1

|LS(X)| = 3 |LS(X)| = 4

When we average over all subsets S ⊂ n∗, we get an approximation (from above) to Int(X,U0, σ):

S S |LS(X)| |LSc(X)|
∅ {0, 1, 2} 1 5
{0} {1, 2} 2 3
{1} {0, 2} 2 4
{2} {0, 1} 2 3
{0, 1} {2} 3 2
{0, 2} {1} 4 2
{1, 2} {0} 3 2
{0, 1, 2} ∅ 5 1

Example 4.2.7 (Computing |LS(X)| for the golden mean SFT).
1

3 · 23

∑
S⊂3∗

log

(
|LS(X)||LSc(X)|
|Ln∗(X)|

)
=

1

24
log

(
64 · 82

56

)
≈ 0.070.

Apparently one needs better formulas for Int and Asc than the definitions, which involve exponentially
many calculations as n grows. Here is a formula that applies to many SFT’s and permits accurate
numerical estimates.

Theorem 4.2.8. Let X be a shift of finite type with adjacency matrix M such that M2 > 0. Let
cnS = 2−n for all S. Then

Asc(X,U0, σ) =
1

4

∞∑
k=1

log |Lk∗(X)|
2k

.

This formula shows that, as expected, Asc is sensitive to word counts of all lengths and thus is a finer
measurement than htop, which just gives the asymptotic exponential growth rate. Below we will see
examples of systems that can be distinguished by Asc and Int but not by their entropies, or even by
their symbolic complexity functions.

The main ideas of the proof are:

1. Each S ⊂ n∗ decomposes into a union of disjoint intervals Ij separated by gaps of length at least
1.

2. Because M2 > 0, logN(S) =
∑
j logN(Ij).

3. We may consider the S ⊂ n∗ that do not contain n− 1, then those that do, and use induction.

Corollary 4.2.9. For the full r-shift with cnS = 2−n for all S,

Asc(Σr,U0, σ) =
log r

2
and Int(Σr,U0, σ) = 0.
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In the following table we compare htop, Int, and Asc for the full 2-shift, the golden mean SFT, and
the subshift consisting of a single periodic orbit of period two. The first is totally disordered, while the
third is completely deterministic, so each of these has intricacy zero, while the golden mean SFT has
some balance between freedom and discipline.

Adjacency Graph Entropy Asc Int

Disordered 0.693 0.347 0

0.481 0.286 0.090

Ordered 0 0 0

As with the definitions of topological and measure-theoretic entropies, one may seek to define an
isomorphism invariant by taking the supremum over all open covers (or partitions). But this will lead
to nothing new.

Theorem 4.2.10. Let (X,T ) be a topological dynamical system and fix the system of coefficients to be
cnS = 2−n. Then

sup
U

Asc(X,U , T ) = htop(X,T ).

Proof. The proof depends on the structure of average subsets of n∗ = {0, 1, . . . , n − 1}: most S ⊂ n∗

have size about n/2, so are not too sparse.

When computing the ordinary topological entropy of a subshift, to get at the supremum over open
covers it is enough to start with the time-0 partition (or open cover) α, then iterate and refine, replacing
α by αk∗ = αk−1

0 . Then for fixed k, when we count numbers of blocks (configurations) , we are looking
at α(n+k)∗ instead of αn∗ ; and when k is fixed, as n grows the result is the same.

When computing Asc and Int, start with the time-0 partition, and code by k-blocks. Then S ⊂ n∗ is
replaced by S + k∗, and the effect on αS+k∗ as compared to αS is similar, since it acts similarly on each
of the long subintervals comprising S.

k/2

s1
s2

Here is a still sketchy but slightly more detailed indication of the idea. Fix a k for coding by k-blocks
(or looking at N((Uk)S) or H((αk)S)). Cut n∗ into consecutive blocks of length k/2. When s ∈ S is
in one of these intervals of length k/2, then s + k∗ covers the next interval of length k/2. So if S hits
many of the intervals of length k/2, then S + k∗ starts to look like a union of long intervals, say each
with |Ej | > k. By shaving a little off each of these relatively long intervals, we can assume that also the
gaps have length at least k.

Given ε > 0, we may assume that k is large enough that for every interval I ⊂ N with |I| ≥ k/2,

(4.2.2) 0 ≤ logN(I)

card(I)
− htop(X,σ) < ε.
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We let B denote the set of S ⊂ n∗ which miss at least 2nε/k of the intervals of length k/2 and show
that

lim
n→∞

card(B)

2n
= 0.

If S /∈ B, then S hits many of the intervals of length k/2, and hence S + k∗ is the union of intervals of
length at least k, and we can arrange that the gaps are also long enough to satisfy the estimate in 4.2.2
comparing (average of log of) number of blocks to htop(X,σ).

Exercise 4.2.2. Prove that supU Int(X,U , T ) = htop(X,T ) (for the system of coefficients cnS = 2−n).

4.3 Ergodic-theoretic intricacy and average sample complexity

We turn now to the formulation and study of the measure-theoretic versions of intricacy and average
sample complexity. For a partition α of X and a subset S ⊂ n∗ define

αS =
∨
i∈S

T−iα.

Definition 4.3.1. [153, 185] Let (X,B, µ, T ) be a measure-preserving system, α = {A1, . . . , An} a
finite measurable partition of X, and cnS a system of coefficients. The measure-theoretic intricacy of T
with respect to the partition α is

Intµ(X,α, T ) = lim
n→∞

1

n

∑
S⊂n∗

cnS [Hµ(αS) +Hµ(αSc)−Hµ(αn∗)] .

The measure-theoretic average sample complexity of T with respect to the partition α is

Ascµ(X,α, T ) = lim
n→∞

1

n

∑
S⊂n∗

cnSHµ(αS).

Theorem 4.3.2. The limits in the definitions of measure-theoretic intricacy and measure-theoretic av-
erage sample complexity exist.

Theorem 4.3.3. Let (X,B, µ, T ) be a measure-preserving system and fix the system of coefficients
cnS = 2−n. Then

sup
α

Ascµ(X,α, T ) = sup
α

Intµ(X,α, T ) = hµ(X,T ).

The proofs are similar to those for the corresponding theorems in topological setting. These observa-
tions indicate that there may be a topological analogue of the following result.

Theorem 4.3.4 (Ornstein-Weiss, 2007). If J is a finitely observable functional defined for ergodic
finite-valued processes that is an isomorphism invariant, then J is a continuous function of the measure-
theoretic entropy.

Here X = (x1, x2, . . . ) is a finite-state ergodic stochastic process, and a “finitely observable functional”
is the a.s. limit F (X) of a sequence of functions fn(x1, x2, . . . , xn) taking values in some metric space
which for every such process converges almost surely. The integral of x1 and the entropy of the process
are examples of finitely observable functionals.

4.4 The average sample complexity function

The observations in the preceding situation suggest that one should examine these Asc and Int locally.
For example, for a fixed open cover U , fix a k and find the topological average sample complexity
Asc(X,Uk, σ) = limn→∞

1
n

∑
S⊂n∗ cnS logN((Uk)S). Or, do not take the limit on n, and study the
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Figure 4.1: Graphs of two subshifts with the same complexity function but different average sample
complexity functions.
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quantity as a function of n, analogously to the symbolic or topological complexity functions. Similarly
for the measure-theoretic version: fix a partition α and study the limit, or the function of n.

Ascµ(X,T, α) = lim
n→∞

1

n

∑
S⊂n∗

cnSHµ(αS).

So we begin study of the Asc of a fixed open cover as a function of n,

Asc(X,σ,Uk, n) =
1

n

∑
S⊂n∗

cnS logN(S),

especially for SFT’s and U = U0, the natural time-0 cover (and partition).

Figure 4.4.1 shows two SFT’s that have the same number of n-blocks for every n but different Asc
functions.

Example 4.4.1.

Asc(n) =
1

n

1

2n

∑
S⊂n∗

logN(S)
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Numerical evidence (up to n = 10) indicates that these two SFT’s have different values of Asc and Int,
although they have identical complexity functions and hence the same topological entropy..

Adjacency Graph htop Asc(10) Int(10)

0.481 0.399 0.254

0.481 0.377 0.208

4.5 Computing measure-theoretic average sample complexity

For a fixed partition α, we develop a relationship between Ascµ(X,α, T ) and a series summed over i
involving the conditional entropies Hµ(α | α∞i ). The series can serve as a computational tool analogous
to the series in Theorem 4.2.8.

The idea is to view a subset S ⊂ n∗ as corresponding to a random binary string of length n generated
by the Bernoulli measure B(1/2, 1/2) on the full 2-shift. For example {0, 2, 3} ⊂ 5∗ ↔ 10110. The
average entropy, Hµ(αS), over all S ⊂ n∗, is then an integral and can be interpreted in terms of the
entropy of a first-return map to the cylinder A = [1] in a cross product of our system X and the full
2-shift, Σ2.

Theorem 4.5.1. Let (X,B, µ, T ) be a measure-preserving system and α a finite measurable partition
of X. Let A = [1] = {ξ ∈ Σ+

2 : ξ0 = 1} and β = α × A the related finite partition of X × A. Denote
by TX×A the first-return map on X ×A and let PA = P/P [1] denote the measure P restricted to A and
normalized. Let cnS = 2−n for all S ⊂ n∗. Then

Ascµ(X,α, T ) =
1

2
hµ×PA

(X ×A, β, TX×A).

Applying the definition of the entropy of a transformation with respect to a fixed partition as the
integral of the corresponding information function and breaking up the integral into a sum of integrals
over sets where the first-return time to X ×A takes a fixed value produces the following result.

Theorem 4.5.2. Let (X,B, µ, T ) be a measure-preserving system and α a finite measurable partition
of X. Let cnS = 2−n for all S ⊂ n∗. Then

Ascµ(X,α, T ) ≥ 1

2

∞∑
i=1

1

2i
Hµ (α | α∞i ) .

Equality holds in certain cases (in particular, for Markov shifts)

4.6 The search for maximizing measures on subshifts

Given a topological dynamical system (X,T ), one would like to find the measures that maximize Asc
and Int, since the nature of these measures might tell us a lot about the balance between freedom and
determinism within the system. For ordinary topological entropy and topological pressure with respect
to a given potential, maximizing measures (measures of maximal entropy, equilibrium states) are of great
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importance and are regarded as natural measures on the system. We hope that Theorem 4.5.2 might
be helpful in the identification of these extremal measures. In the topological case the first-return map
TX×A is not continuous nor expansive nor even defined on all of X × A in general, so known results
about measures of maximal entropy and equilibrium states do not apply. To maximize Int, there is the
added problem of the minus sign in

Int(X,U , T ) = 2 Asc(X,U , T )− htop(X,U , T ).

Maybe some modern work on local or relative variational principles, almost subadditive potentials,
equilibrium states for shifts with infinite alphabets, etc. could apply? (See [17, 18, 44, 50, 73, 100, 103,
106,145,187] etc.)

But the above theorem does give up some information immediately:

Proposition 4.6.1. When T : X → X is an expansive homeomorphism on a compact metric space
(e.g., (X,T ) is a subshift on finite alphabet), Ascµ(X,T, α) is an affine upper semicontinuous (in the
weak* topology) function of µ, so the set of maximal measures for Ascµ(X,T, α) is nonempty, compact,
and convex and contains some ergodic measures (see [181, p. 198 ff.]).

We try now to find measures of maximal Asc or Int on SFT’s, or at least maximal measures among
all Markov measures of a fixed memory. Recall that a measure of maximal entropy on an SFT is unique
and is a Markov measure, called the Shannon-Parry measure, denoted here by µmax. Further, given
a potential function φ that is a function of just two coordinates, again there is a unique equilibrium
measure that maximizes

(4.6.1) Pµ(φ) = hµ(σ) +

∫
X

φdµ.

See [149].

A 1-step Markov measure on the full shift space (Σn, σ) is given by s stochastic matrix P = (Pij) and
fixed probability vector p =

(
p0 p1 . . . pn−1

)
, i.e.

∑
pi = 1 and pP = p. The measure µP,p is

defined as usual on cylinder sets by

µp,P [i0i1 . . . ik] = pi0Pi0i1 · · ·Pik−1ik .

Example 4.6.2 (1-step Markov measure on the golden mean shift). Denote by P00 ∈ [0, 1] the proba-
bility of going from 0 to 0 in a sequence of X{11} ⊂ Σ2. Then

P =

(
P00 1− P00

1 0

)
, p =

(
1

2−P00

1−P00

2−P00

)

Using the series formula in Theorem 4.5.2 and known equations for conditional entropy, we can ap-
proximate Ascµ and Intµ for Markov measures on SFTs. Let’s look first at 1-step Markov measures.
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Calculations for one-step Markov measure

on the golden mean shift

hΜ

AscΜ

IntΜ

P00 hµ Ascµ Intµ

0.618 0.481 0.266 0.051
0.533 0.471 0.271 0.071
0.216 0.292 0.208 0.124

Note that the maximum value of hµ = htop = log φ occurs when P00 = 1/φ; there are unique maxima
among 1-step Markov measures for Ascµ and Intµ; and the maxima for Ascµ, Intµ, and hµ are achieved
by different measures.

Now let’s calculate Asc and Int for various 2-step Markov measures on the golden mean SFT.

2-step Markov measures on the golden mean shift

Average sample complexity for two-step Markov measure

on the golden mean shift

0.0
0.5

1.0 P000

0.0

0.5

1.0
P100

0.0

0.1

0.2

AscΜ

Intricacy for two-step Markov measure

on the golden mean shift

0.0
0.5

1.0
P000

0.0

0.5

1.0

P100

0.00

0.05

0.10

0.15

IntΜ

P000 P100 hµ Ascµ Intµ

0.618 0.618 0.481 0.266 0.051
0.483 0.569 0.466 0.272 0.078
0 0.275 0.344 0.221 0.167

Ascµ appears to be strictly convex, so it would have a unique maximum among 2-step Markov measures.
Intµ appears to have a unique maximum among 2-step Markov measures on a proper subshift (P000 = 0).
The maxima for Ascµ, Intµ, and hµ are achieved by different measures, and are different from the
measures that are maximal among 1-step Markov measures.

Let’s move from the golden mean SFT to the full 2-shift.
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AscΜ
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1-step Markov measures on the full 2-shift

Average sample complexity for one-step Markov measure

on the full 2-shift

0.0
0.5

1.0 P00

0.0
0.5

1.0 P11

0.0

0.1

0.2

0.3

AscΜ

Intricacy for one-step Markov measure

on the full 2-shift

0.0
0.5

1.0
P00

0.0
0.5

1.0 P11

0.00

0.05

0.10

IntΜ

P00 P11 hµ Ascµ Intµ

0.5 0.5 0.693 0.347 0
0.216 0 0.292 0.208 0.124
0 0.216 0.292 0.208 0.124
0.905 0.905 0.315 0.209 0.104

Ascµ appears to be strictly convex, so it would have a unique maximum among 1-step Markov measures.
Intµ appears to have two maxima among 1-step Markov measures on proper subshifts (P00 = 0 and
P11 = 0). There seems to be a 1-step Markov measure that is fully supported and is a local maximum for
Intµ among all 1-step Markov measures. The maxima for Ascµ, Intµ, and hµ are achieved by different
measures.

We summarize some of the questions generated above.

Conjecture 4.6.3. On the golden mean SFT, for each r there is a unique r-step Markov measure µr
that maximizes Ascµ(X,σ, α) among all r-step Markov measures.

Conjecture 4.6.4. µ2 6= µ1

Conjecture 4.6.5. On the golden mean SFT there is a unique measure that maximizes Ascµ(X,T, α).
It is not Markov of any order (and of course is not the same as µmax).

Conjecture 4.6.6. On the golden mean SFT for each r there is a unique r-step Markov measure that
maximizes Intµ(X,T, α) among all r-step Markov measures.



52 Part 4. Balancing freedom and interdependence

P00 hµ Ascµ Intµ

0.618 0.481 0.266 0.051
0.533 0.471 0.271 0.071
0.216 0.292 0.208 0.124

Table 4.1: Calculations for one-step Markov measures on the golden mean shift. Numbers in bold are
maxima for the given categories.

P000 P100 hµ Ascµ Intµ

0.618 0.618 0.481 0.266 0.051
0.483 0.569 0.466 0.272 0.078
0 0.275 0.344 0.221 0.167

Table 4.2: Calculations for two-step Markov measures on the golden mean shift.

Intricacy for two-step Markov measure

on the golden mean shift

0.0
0.5

1.0
P000

0.0

0.5

1.0

P100

0.00

0.05

0.10

0.15

IntΜ

Conjecture 4.6.7. On the 2-shift there are two 1-step Markov measures that maximize Intµ(X,T, α)
among all 1-step Markov measures. They are supported on the golden mean SFT and its image under
the dualizing map 0↔ 1.

Conjecture 4.6.8. On the 2-shift there is a 1-step Markov measure that is fully supported and is a local
maximum point for Intµ(X,T, α) among all 1-step Markov measures.

The conjectures extend to arbitrary shifts of finite type and other dynamical systems. Many other
natural questions suggested by the definitions and properties established so far of intricacy and average
sample complexity can be found in the dissertation of Ben Wilson [185]:

1. We do not know whether a variational principle supµ Ascµ(X,T, α) = Asctop(X,α, T ) holds.

2. Analogous definitions, results, and conjectures exist when entropy is generalized to pressure, by in-
cluding a potential function which measures the energy or cost associated with each configuration.
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Figure 4.2: Combination of the plots of hµ, Ascµ, and Intµ for two-step Markov measures on the golden
mean shift.

First one can consider a function of just a single coordinate that gives the value of each symbol. Max-
imum intricacy may be useful for finding areas of high information activity, such as working regions
in a brain (Edelman-Sporns-Tononi) or coding regions in genetic material (Koslicki-Thompson).

3. Higher-dimensional versions, where subsets S of coordinates are replaced by patterns, are naturally
defined and waiting to be studied.

4. One can define and then study average sample complexity of individual finite blocks.

5. We need formulas for Asc and Int for more subshifts and systems.

6. Find the subsets or patterns S that maximize logN(US) or log[N(US)N(USc)]/N(Un∗), and similarly
for the measure-preserving case.

7. In the topological case, what are the natures of the quantities that arise if one changes the definitions
of Alt and Int by omitting the logarithms?

8. Consider not just subsets S and their complements, but partitions of n∗ into a finite number of
subsets. For the measure-preserving case, there is a natural definition of the mutual information
among a finite family of random variables on which one could base the definition of intricacy.

We welcome help in resolving such questions and exploring further the ideas of intricacy, average sample
complexity, and complexity in general!
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76. Sébastien Ferenczi and Pascal Hubert, Three complexity functions, RAIRO Theor. Inform. Appl.
46 (2012), no. 1, 67–76. MR 2904961
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