
CHAPTER 1

Dynamical approach of Delone sets and tilings

1. Definitions and backgrounds on Delone sets

In this subsection, we present the basic definitions and properties concerning Delone sets. The Eu-
clidean space of dimension d ≥ 1 is denoted Rd and the open ball of radius R centered at x ∈ Rd is
denoted BR(x). For any set X ⊂ Rd and point y ∈ Rd, X − y denotes the set {y − x; y ∈ X}. More
details on Delone sets can be found, for instance, in [BBG06, KP00, LP03].

Definition of a Delone set. A discrete subset X of Rd is a (rX , RX)-Delone set if X is:

– rX -uniformly discrete: each open ball of radius rX in Rd contains at most one point of X,
– RX -relatively dense: each closed ball of radius RX in Rd contains at least one point of X.

If no precision is required, we just say that X is a Delone set. For instance the subset Z × {0} is
not a Delone set of R2, whereas the lattice of points with integer coordinates Zd is a Delone set.
Moreover, the image of a Delone set by a bi-Lipschitz map (a bijective Lipschitz map whose inverse
also is Lipschitz) of Rd is still a Delone set.
For R > RX , a subset P of a Delone set X is a R-patch of X, or a pattern for short, if, for some x ∈ X,
one has

P = X ∩BR(x).

We say that the patch P is centered at x, but noticed that this center may not be unique. A point
y ∈ Rd is an occurence of a patch P = X ∩BR(x) if

(X ∩BR(y))− y = (X ∩BR(x))− x.

The R-atlas AX(R) of X is the collection of all the R-patches centered at a point of X and translated
to the origin. More precisely, we set

AX(R) := {(X ∩BR(x))− x : x ∈ X}.

We say that X has a finite local complexity (FLC) if AX(R) is finite for every R. This means that X
has a finite number of R-patches, up to translation.

Exercice 1. Show that a Delone set X has a finite local complexity if and only if the set

X −X := {x− y; x, y ∈ X}

is discrete, or equivalently, the intersection of any bounded set with X −X is finite.

Exercice 2. Show that a Delone set X has a finite local complexity iff there exists an R > 2RX such
that ]AX(R) < +∞.
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Of course, the lattice Zd has finite local complexity, since the set Zd − Zd = Zd is uniformly discrete.
If α is an irrational number, let f : R→ R denote the map

f : y 7→

{
0 when y is odd,

α y2 otherwise.

Then, the set {(x+ f(y), y);x, y ∈ Z} has no finite local complexity.
Less trivial examples of FLC Delone sets are given by the cut and project scheme. We present here
a construction in dimension one that can be straightforwardly generalized in any dimension. Let α
be number and let D be the line y = αx in R2. We denote by π : R2 → D and π⊥ : R2 → D⊥ the
orthogonal projections respectively onto D and its orthogonal space D⊥.

Exercice 3. Show that the projection on D of integer points at distance 1 from D, namely

X(α) := π{z ∈ Z2; ‖π⊥(z)‖ ≤ 1}

forms a Delone set of R with finite local complexity.

Observe that, when X is a Delone set of Rd, then X + v, obtained by translating any point of X by
v ∈ Rd, also is a Delone set. A Delone set is said to be aperiodic if X + v = X implies v = 0, and
periodic otherwise. In Example 3, it is simple to check that the Delone set X(α) is aperiodic if, and
only if, α is irrational.
The collection of return vectors associated to the patch P is thus the set

RP(X) := {v ∈ R : P + v is a patch of X}.

If we fix a center xP of P such that P = X ∩BR(xP) then the set of occurrences of P is the set

XP := xP +RP.

The following lemma is well-known and its proof is plain by contradiction.

Lemma 1 (Repulsion Lemma). If X is an aperiodic FLC Delone set, then, given S > 0, there exists
a constant RS > 0 such that, for any R ≥ RS and any R-patch P of X, its set of occurrences XP is
S-uniformly discrete.

Exercice 4. Prove the repulsion lemma.

There is a relation between Delone set and tiling of the space. For a (rX , RX)-Delone set X, the
Voronöı cell Vx of a point x ∈ X is the set

Vx = {y ∈ Rd : ‖y − x‖ ≤ ‖y − x′‖,∀x′ ∈ X}.

It is then direct to check that any Voronöı cell Vx is a convex polyhedra, its diameter is smaller or
equal to 2RX and it contains the ball B rX

2
(x). Moreover when the Delone set X is of finite local

complexity, the collection of Voronöı cells {Vx}x∈X forms a tiling of Rd, where the tiles meet full face
to full face. This last condition implies there is a finite number of pattern (connected set of tiles) for
a fixed diameter.
Conversely, given a tiling with a finite number of tiles, up to translation, and assume that each tile is a
convex polyhedra and the tiles meet full face to full face. Then by choosing a point on the barycenter
of each tile, we get a FLC Delone set. We prefer to use the Delone set point of view because it enables
to avoid to manage the geometry of the tiles, that is useless for our purpose.
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2. Topology of Delone sets spaces

In order to study relevant combinatorial properties of a Delone set X, we will associate a dynamical
system, whose properties reflect the combinatorial one of X. This relation between combinatorics and
dynamics is actually classical. For instance, such strategy has been successfully used by Furstenberg to
give a proof of the Szemeredi’s Theorem [Fur81]. For detailed proofs, we refer to [BBG06, Rob96,
Sol97, Rud89].
First, observe that to each Delone set X, we can associate a Radon measure (taking a finite value
to each compact set) of Rd, by the following way νX =

∑
x∈X δx, where δx is the Dirac measure at

x. The set of theses measures M(Rd, r, R) obtained from (r,R)-Delone sets, is a subset of the dual
of continuous functions with compact support Cc(Rd,R). It is a closed set for the weak-* topology.
The induced topology on this set is called the Gromov-Hausdorff topology and is metrizable. For this
topology, a sequence (Xn)n of Delone sets converge if and only if for each bounded open set U ⊂ Rd,
the sequence of sets (U ∩Xn)n converges for the Hausdorff topology. More combinatorially, for this
topology, two Delone sets are close if they agree on a big ball centered at the origin, up to a small
translation.

Exercice 5. Show that the following define a distance for the Gromov-Hausdorff topology on the set
of FLC Delone sets.

D(X1, X2) := inf
({

0 < r < 1 : ∃‖v‖ < r, s.t. (X1 ∩B1/r(0)) + v = X2 ∩B1/r(0)
}
∪ {1}

)
.

The group Rd acts continuously by translation on the set of FLC Delone sets

Rd × {X FLC Delone sets } → {X FLC Delone sets }
(v,X) 7→ X − v := {x− v;x ∈ X}.

This action can also be seen as the restriction of the Rd-translation action on M(Rd, r, R) given by
ν.v(f) := ν(f(· − v)) for ν ∈ M(Rd, r, R), f ∈ Cc(Rd,R) and v ∈ Rd. The orbit of X is denoted
X + Rd = {X + v : v ∈ Rd}.
The continuous hull Ω(X) of a Delone set X is the closure for the Gromov-Hausdorff topology of the

Rd-orbit of X, Ω(X) = X + Rd. So Ω(X) is a set of Delone sets and is invariant by the translation
action. The dynamical system (Ω(X),Rd) is then called a Delone system. Notice that

∀X ′ ∈ Ω(X), we have AR(X ′) ⊂ AR(X) for every R > 0.(1)

Property 1. Let X ⊂ Rd be a FLC Delone set, then the hull Ω(X) is compact.

Proof. Since the topology is metrizable, it is enough to show the compacity with sequences. Let
(Xn)n ⊂ Ω(X) be a sequence of Delone sets in the hull. By (1), we get that each Xn is a (rX , RX)-
Delone set. So there is a vn ∈ Rd, ‖vn‖ ≤ RX such that the origin 0 belongs to the set Xn − vn.
Since X has FLC, from (1), we also get that for any real R > 0, the patch (Xn − vn) ∩ BR(0) is
the same for infinitely many indices n. So by a diagonal extraction, we obtain that a subsequence of
(Xn − vn)n converges to a Delone set Y ⊂ Rd. By compacity, we may also assume that the sequence
(vn)n converges to a vectors v ∈ Rd. It follows that a subsequence of (Xn)n converges to the Delone
set Y + v. �

Examples of hull. Let X be Delone set of Rd with d independent periods X + vi = X for v1, . . . , vd
independent vectors. Then the is an onto continuous map Rd/〈v1, . . . , vd〉 → X +Rd, so that the hull
Ω(X) is homeomorphic to the d-torus Rd/〈v1, . . . , vd〉.
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When the Delone set X is aperiodic, the things are more complicated, but detailed in Section 4.

3. Multirecurrence theorem

We will see in this section an application of Dynamical systems theory to the combinatorics of the
Delone sets. For this, let us first recall the Multiple Birkhoff Recurrence Theorem for commuting
homeomorphism [Fur81, Proposition 2.5].

Theorem 1 (Multiple Birkhoff Recurrence Theorem (Furstenberg)). Let Ω be a compact metric space
and T1, . . . , T` commuting homeomorphisms of Ω. Then there exist a point x ∈ Ω and a sequence
nk →∞ such that for each i = 1, . . . , `, Tnki (x)→ x as k goes to infinity.

The main important fact in this theorem is that the sequence (nk)k is the same for each index i.
Furstenberg’s original application of this theorem was to prove Gallai’s extension of the Van der
Waerden’s theorem to higher dimension.

Corollary 1. Let X ⊂ Rd be a Delone set with FLC. Given ε > 0 and a finite subset F ⊂ Rd, there
exists an n ∈ N and a 1/ε-patch P of X such that for each u ∈ F there exists a vector ~c, ‖~c‖ < ε such
that

P + nu+ ~c is a patch of X.

This result means that for every FLC Delone set X and every arbitrary finite set F , there exists a big
patch of X whose the set of occurrences contains an homothetic copy of F , up to a small error. See
[dlLW09] for extensions of this results.

Proof of Corollary 1. We known from Proposition 1 that the hull Ω(X) is a compact metric
space. Let F = {u1, . . . , u`} and consider ` commuting homeomorphism of Ω(X) given by Ti : Y 7→
Y − ui. Consider ε′ > 0 such that 1/ε > 1/ε+RX + 1 where RX is the relative denseness constant of
X.
By the Multiple Birkhoff Recurrence Theorem, there exists a Delone set Y ∈ Ω(X) an a sequence nk →
∞ such that Tnki Y → Y for 1 ≤ i ≤ `. In particular there is an integer n such that D(Y, Tni Y ) < ε′

for each index i. Since Y is a limit of translated of X, we can find a vector v ∈ Rd, such that
D(X − v − nui, X − v) < ε′. By definition of the metric, the Delone sets X − v − nui and X − v
coincide, up to an ε′ translation, on a ball of radius 1/ε′ centered at the origin. This means there exist
a 1/ε′ −RX -patch P of X and vector ~ci, ‖~ci‖ < ε such that P+ nui + ~ci is a patch of X − v, and so is
a patch of X. �

4. Topological dynamics

We present general properties of dynamical systems. To simplify the presentation, we restrict ourself
on a continus Rd-action on a compact metric space Ω, denoted by (v, x) ∈ Rd × Ω 7→ x− v ∈ Ω. But
all of this can be generalized to continuous action of, not necessarily Abelian, topological group (see
[Aus88]).

Definition 1. Let (Ω,Rd) be a topological dynamical system where Ω is a compact metric space. A
closed Rd-invariant subset K ⊂ Ω is minimal for the action if there is no non empty closed subset
K ′  K invariant by the Rd action.
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Let us precise that K is invariant by the action means when K − v = K for each vector v ∈ Rd.
For instance, if the orbit of a point is compact, this orbit is a minimal subset.
The following characterization is easy: A set K is minimal for the Rd-action if, and only if, orb(x) = K
for all x ∈ K. In this sense, it is not possible to topologically separate the orbits in a minimal set.
The interest of this notion comes from the following result:

Theorem 2. Let (Ω,Rd) be a topological dynamical system where Ω is a compact metric space. Then
there exists a non empty compact minimal subset invariant by the Rd action.

Proof. It is enough to apply the Zorn’s lemma to the collection of invariant closed and non
empty subset of Ω, with the order relation given by the inclusion. This collection is non empty since it
contains the set Ω. If we consider a chain, i.e. a countable family of nested compact invariant subsets.
The intersection is a non empty compact subset and invariant by the action, it is a smallest element.
By Zorn’s lemma, there exists a smallest non empty compact subset invariant by the action. �

Theorem 3 (Auslander, [Aus88]). Let (Ω,Rd) be a topological dynamical system where Ω is a compact
metric space and x ∈ Ω. The closure of the Rd-orbit of x is minimal ⇔ the point x is almost periodic,
i.e. for any neighborhood U of x, the set {v ∈ Rd;x− v ∈ U} is relatively dense.

Proof. ⇒ Assume that M := orb(x) is minimal and let U be a neighborhood of x. First note
that M ⊂ U −Rd (otherwise M \ (U −Rd) is a closed invariant proper subset of M). By compactness,
there exists a finite set K = {v1, . . . , v`} ⊂ Rd such that M ⊂ ∪`i=1U − vi. It follows that for any
w ∈ Rd, there is a vi such that x−(w−vi) ∈ U . In other terms, we have Rd = {v ∈ Rd;x−v ∈ U}+K,
and we get the conclusion.
⇐ Suppose that x is an almost periodic point. If the compact set M := orb(x) is not minimal, by
lemma 2, there exists a non empty minimal set M ′  M . Let U and V be disjoint open sets with
x ∈ U and M ′ ⊂ V . Let K ⊂ Rd be an arbitrary compact set and let W be a neighborhood of M ′

such that W ⊂ V −K. Since the orbit of x is dense, there is a w ∈ Rd such that x− w ∈ W . Hence
x − w + K ⊂ W + K ⊂ V and we get that (x − w + K) ∩ U = ∅. We have then {v ∈ Rd;x − v ∈
U}+K 6= Rd. Since K is arbitrary, we obtain a contradiction with the almost periodicity of x. �

The almost periodicity can be interpreted combinatorially for Delone sets.

Corollary 2. Let X ⊂ Rd be a FLC Delone set. The hull Ω(X) is minimal if, and only if, the set
X is repetitive: i.e. For any real R > 0, there is a constant M(R) > 0 such that any ball BM (x) of
radius M , the set BM (x) ∩X contains an occurrence of each R-patch of X.

Proof. Exercice ! �

From this and the repulsion lemma (Lemma 1), we get:

Corollary 3. Let X ⊂ Rd be a repetitive aperiodic FLC Delone set.
Then for any patch P, its set of occurrences XP is a FLC Delone set.
Each Delone set Y ∈ Ω(X) is a repetitive aperiodic Delone set.

Exercice 6. Let α be an irrational number. Show that the set Zα+Z = {nα+m;n,m ∈ Z} is dense
in R. Deduce from this that the Delone set X(α) defined in Exercice 3 is repetitive.
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5. Geometrical properties of the hull

Let X ⊂ Rd be a FLC Delone set.
Given Y ∈ Ω(X) and S > 0 such that Y ∩BS(0) 6= ∅, the associated cylinder set is defined as

CY,S := {Y ′ ∈ Ω(X) : Y ∩BS(0) = Y ′ ∩BS(0)}.

The translations of cylinder sets, namely,

CY,S −Bε(0) := {Y ′ − v : v ∈ Bε(0), Y ′ ∈ CY,S}, for ε > 0, S > 0, Y ∈ Ω(X),

form a base for the topology of Ω(X).
The canonical transversal Ξ0(X) of the hull Ω(X) is the set of Delone sets Y in Ω(X) such that the
origin 0 belongs to Y . The designation transversal comes from the obvious fact that the set Ξ0(X)
is transverse to the action: for any vector v smaller than the uniform discreteness constant, clearly
Y − v 6∈ Ξ0(X) for any Y ∈ Ξ0(X). This gives a Poincaré section.

Property 2 ([KP00]). The canonical transversal Ξ0(X) and the cylinder sets CX,S of a repetitive
aperiodic FLC Delone set X ⊂ Rd are Cantor sets.

Observe that when X has d independent periods v1, . . . , vd ∈ Rd, X−vi = X, the canonical transversal
and the cylinder sets are finite.

Proof. Observe that the canonical transversal and each cylinder set are compact sets for the
Gromov-Hausdorff topology. Moreover, the FLC property implies that for every S > 0, Y ∈ Ξ0(X),
the complementary in Ξ0(X), of the cylinder set CY,S , is a finite union of cylinder sets, that is

Ξ0(X) \CY,S =
⋃`
i=1 CYi,S for some Y1, . . . , Y` in Ξ0(X). It follows that Ξ0(X) \CY,S is a closed set,

meaning that CY,S is both closed and open. Since cylinder sets generate the topology on Ξ0(X), this
space is totally disconnected.
If Ξ0(X) has an isolated point Y , the repetitivity hypothesis, implies there are infinitely many vectors
v ∈ Rd such that X − v = Y . This is a contradiction with the aperiodicity of X. Finally we get that
Ξ0(X) is a Cantor set. �

Property 3. Let X ⊂ Rd be repetitive aperiodic FLC Delone set. Then for any S > 0 there exists a
real R, such that the map

BS(0)× CX,R → CX,R −BS(0) ⊂ Ω(X)

(v, Y ) 7→ Y − v

is a homeomorphism onto its image.

As a consequence, the hull is locally homeomorphic to the Cartesian product of an open subset of
Rd times a Cantor set. This is a structure of a matchbox manifold [AO95]. Each orbit corresponds
then to a pathwise connected component of the topological space. Geometrically, these subsets are
called leaves. In the aperiodic case, each leaf (or each orbit) is homeormorphic to Rd. Moreover the
transversal space (to he leaves) is totally disconnected.
More specifically, one can show that the hull has a flat-lamination structure meaning that the tran-
sition map along the leaves are translations, and small enough cylinder set share the same vector of
translation. This enable to give an other description of the hull in terms of inverse limit of branched
manifolds [BBG06]. This construction leads to the proof of the gap-labelling conjecture.
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Proof. The repulsion lemma (Lemma 1) give us a real R such that the set {v ∈ Rd;X−v ∈ CX,R}
is 2S-uniformly discrete. Since any patch of Y ∈ Ω(X) is still a patch of X, up to translations, the
set {v ∈ Rd;Y − v ∈ CX,R} is still 2S-uniformly discrete. The continuity of the map comes from the
continuity of the action. To show the injectivity, if Y1 − v1 = Y2 − v2, we have Y1 = Y2 − (v2 − v1),
and so v1 = v2 by the very choice of the constants. �

Exercice 7. The aim of this exercice is to show that for each aperiodic FLC Delone set X ⊂ Rd,
there exist two Delone sets X1 6= X2 ∈ Ω(X) and a vector ~v ∈ Rd, ‖~v‖ = 1 such that

X1 ∩ {x ∈ Rd; 〈x,~v〉 > 0} = X2 ∩ {x ∈ Rd; 〈x,~v〉 > 0},
where 〈·, ·〉 denote the usual inner product.
In the following, Sd−1 denote the set of vector ~v ∈ Rd such that ‖~v‖ = 1 and H~v is the open half-space
{x ∈ Rd; 〈x,~v〉 < 0}. For ε > 0, let

Eε := {R > 0; ∃~v ∈ Sd−1, Y, Z ∈ Ω(X), D(X,Y ) ≥ ε, sup
w∈H~v∩BR(0)

D(Y − w,Z − w) < ε}.

Let Mε = supEε if Eε 6= ∅ and Mε = 1 otherwise.
0) Show that if Mε = +∞ for an ε > 0 small enough, then we get the conclusion.
By contradiction. We assume now that Mε < +∞ for every ε > 0.
1) Show there exists a R0 > 0 such that for every vector w ∈ Rd, ‖w‖ ≥ R0, there is an half space H~v
such that

H~v ∩BMε+1(0) ⊂ B‖w‖(w).

2) Let R1 = max(R0,Mε + 1). Show there exists a δ > 0 such that if D(Y,Z) < δ, Y,Z ∈ Ω(X) then
supw∈BR1

(0)D(Y − w,Z − w) < ε.

3) Let Y,Z ∈ Ω(X) such that D(Y,Z) < δ. Show that the set {R,D(Y −w,Z −w) < ε,∀w ∈ BR(0)}
is an open interval of R.
Let R∞ := sup{R,D(Y − w,Z − w) < ε,∀w ∈ BR(0)}. Show that R∞ ≥ R1.
Let us assume that R∞ < +∞. Let w0 ∈ Rd such that ‖w0‖ = R∞. Prove that for any w ∈
H~v ∩BMε+1(0), we have w + w0 ∈ B‖w0‖(0).
Deduce that D(Y − w0, Z − w0) < ε, and obtain a contradiction to obtain that R∞ = +∞.
4) Deduce from 3) that X is periodic.





CHAPTER 2

Linearly repetititve Delone sets

1. History and motivations

The notion of linearly recurrent subshift has been introduced in [DHS99] to study the relations
between substitutive dynamical systems and stationary dimension groups. In an independent way,
the similar notion of linearly repetitive Delone sets of the Euclidean space Rd appears in [LP02]. For
a Delone set X of Rd the repetitivity function MX(R) is the least M (possibly infinite) such that every
closed ball B of radius M intersected with X contains a translated copy of any R-patch. Recall from
Corollary 2 a finite repetititve function is equivalent to the minimality of the associated hull.
A Delone set X is said linearly repetitive if there exists a constant L such that MX(R) < LR for all
R > 0. Observe that we can assume that the constant L is greater than 1. According to the following
theorem, the slowest growth for the repetitivity function of an aperiodic Delone set is linear.

Theorem 4 ([LP02] Theo. 2.3). Let d ≥ 1. There exists a constant c(d) > 0 such that for any
Delone set X of Rd such that

MX(R) < c(d)R for some R > 0,

then X has a non-zero period.

Even more, if for some R, MX(R) < 4
3R, then the Delone set X is a crystal i.e. has d independent

periods (Theo. 2.2 [LP02]) .
The classical examples of aperiodic Delone systems, e.g. the ones arising from substitutions, are
linearly repetitive.

Lemma 2 ([Sol98] Lem. 2.3). A primitive self similar tiling is linearly repetitive.

In many senses that we will not specify, the family of linearly repetitive Delone sets is small inside
the family of all the Delone sets of the Euclidean space Rd. For instance, in the class of Sturmian
subshifts, several authors [MH40, Dur00, LP03] show the following result.

Property 4. The Sturmian subshift associated to an irrational number α is linearly recurrent if and
only if the coefficients of the continued fraction of α are bounded.

Let us recall that for the standard topology, the set of numbers with bounded continued fraction are
badly approximable by rational numbers. It is known that they form a Baire meager set, with 0
Lebesgue measure but with Hausdorff dimension 1.
As we shall see, the linearly repetitive Delone sets possess many rigid properties. In the next section
we present some combinatorial properties of these sets. For instance, their complexity appears to
be the slowest possible among all the aperiodic repetitive Delone sets. We focus in Section 3 on
the ergodic properties of dynamical systems associated to linearly repetitive Delone sets. They are

9



10 2. LINEARLY REPETITITVE DELONE SETS

strictly ergodic (i.e. each patch appears with a frequency). But they are not wild since they are never
measurably mixing. We present a characterization of the linear repetitivity by using a bound on the
frequencies of the occurrences of the patches. The dynamical factors of these systems are studied in
Section 4. They admit as factors just a finite number of non conjugate aperiodic Delone systems. The
last section concerns the deformation of linearly repetitive Delone sets: each one is the image through
a Lipschitz map of a lattice in Rd. We refer to [APCC+15] and its references for a survey on linearly
repetitive Delone sets.

2. Combinatorial properties

In this section we give the basic definitions and combinatorial properties concerning linearly repetitive
Delone sets of Rd. Most of these properties are obvious for self-similar tilings.
The following lemma shows that two occurrences of a patch can not be too close. The proof can be
found in [Len04] Lem. 2.1 and in [Sol98, Dur00].

Lemma 3. Let X be a linearly repetitive aperiodic Delone set with constant L > 1. Then, for every
patch P = X ∩BR(x) with x ∈ X, R > 0, its set of occurences XP is a (rX , RX)-Delone set where

R

L+ 1
≤ rXP

≤ RXP
≤ LR.

Proof. Only the left inequality is not obvious. By contradiction: let us assume there exist
x 6= y ∈ X with

(X ∩BR(x))− x = X ∩BR(y)− y
and

rX ≤ ‖x− y‖ <
R

(L+ 1)
.

Then for any point z′ in BR(x)∩X, we have z′+(y−x) ∈ X. For any z ∈ X, the set X∩BR(x) contains
a translated copy centered in z′ ∈ X∩BR(x) of the patch B R

L+1
(z)∩X. Thus z′+(y−x) ∈ X∩B R

L+1
(z′)

and finally z + (y− x) ∈ X and so X + (y− x) ⊂ X. In a similar way we obtain X + (x− y) ⊂ X, so
that finally we get X + x− y = X contradicting the aperiodicity of X. �

This repulsion property on the occurrences of patches has several consequences on the combinatorics
of the Delone set X.
First of all on the complexity. Let us denote NX(R) the number of different R-patches BR(x)∩X with
x ∈ X, up to translation. Since any ball of radius MX(R) contains the occurrences of any R-patch,

we easily deduce that NX(R)
1
d = O(MX(R)) as R→∞ (see [LP03]).

Lemma 4 ([Len04], Lem. 2.2). Let X be an aperiodic linearly repetitive Delone set. Then

lim inf
R→+∞

NX(R)

Rd
> 0.

From this, we conclude that for an aperiodic linearly repetitive Delone set MX(R) = O(NX(R)
1
d ) as

R→∞.

Proof. As X is relatively dense, there exist constants λ1 > 0 and R1 > 0 such that

](X ∩BR(x)) ≥ λ1Rd for any x ∈ X, R ≥ R1.
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By the previous lemma all the patches (X − x)∩BR(0) for x ∈ X ∩B R
3(L+1)

(0) are pairwise different.

Thus for any R ≥ 3(L+ 1)R1, we have

NX(R) ≥ ](X ∩B R
3(L+1)

(0)) ≥ λ1
(

R

3(L+ 1)

)d
,

that gives us the result. �

Another property is on the hierarchical structure of the linearly repetitive Delone sets, that is quite
simple: for any size R > 0, it is possible to decompose the Delone set into big patches (each one
containing a R-patch), so that the number of these patches, up to translations, is independent of the
size R. To be more precise, we need the notion of Voronöı cell of a patch.
For a patch R-patch P = BR(xP)∩X of a repetitive Delone set X, we denote by VP,x the Voronöı cell
(see chapter 1) associated to the Delone set XP and an occurrence x ∈ XP.
It follows by Lemma 3 that for an aperiodic linearly repetitive Delone set with constant L, for any
R-patch P,

diam VP,x ≤ 2LR, B R
2(L+1)

(x) ⊂ VP,x, for any x ∈ XP.(2)

Lemma 5 ([CDP10] Lem. 11). Let X be an aperiodic linearly repetitive Delone set with constant
L. There exists an explicit positive constant c(L) such that for every R > 0 and every R-patch
P = X ∩BR(x), the collection {X ∩ VP,x : x ∈ XP} contains at most c(L) elements up to translation.

Observe here that the bound, explicit in the proof, does not depend on the combinatorics of X but
just on the constant of repetitivity.

Proof. Let us consider B the union of Voronöı cells VP,x, x ∈ XP that intersects the ball BL2R(0).
We have then

BL2R(0) ⊂ B ⊂ BL2R+2LR(0).

By linear repetitivity, B∩X contains a translated copy of any patch of the kind X ∩VP,x with x ∈ XP.

Since any Voronöı cell contains a ball of radius R
2(L+1) , the number of patches in B ∩X of the kind

X ∩ VP,x with x ∈ XP is smaller than

vol BRL(L+2)(0)

vol B R
2(L+1)

(0)
≤ (2L(L+ 2)2)d = c(L).

�

3. Ergodic properties of linearly repetitive system

3.1. Background on invariant measure. As for Z-action, it is possible to show that any
contiunous Rd-actions on a compact metric space Ω does admit a translation invariant measure µ:
that is, a Borel probability measure such that µ(B − v) = µ(B) for every Borel set B and v ∈ Rd.
The proof is similar to the one of the Krylov-Bogolyubov theorem, by fixing a point w0 ∈ Ω and a
weak-limit of the linear forms f ∈ C(Ω) 7→ 1

volDN

∫
DN

f(w0 − t)dLeb(t), where (DN )N is a nested

sequence of d-cubes, and Leb denotes the Lebesgue measure on Rd.
We present here a local description of a probability measure µ on the hull Ω(X) of a FLC Delone set
invariant by the Rd-action. Let C be a cylinder set. Each translation invariant measure µ induces
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a measure ν on C (see [CGSY99] for the general construction): given a Borel subset V of C, its
transverse measure is defined by

ν(V ) =
µ(V −Br(0))

vol(Br(0))
,

where vol denotes the Euclidean volume in Rd and with the notations of section 5 in chapter 1. Since
the measure µ is Rd-invariant, the value ν(V ) does not depend on small r. This gives a measure on
each C. The collection of all measures defined in this way is called the transverse invariant measure
induced by µ. It is invariant in the sense that if V is a Borel subset of C and x ∈ Rd is such that V −x
is a Borel subset of another local transversal C ′, then ν(V − x) = ν(V ). Conversely, the measure µ of
any set written as C −BS(0), with S small eough, may be computed by the equation

µ(C −BS(0)) = vol(BS(0))× ν(C).

3.2. Unique ergodicity and speed of convergence. When the system (Ω,Rd) has an unique
translation invariant probability measure, the system is called uniquely ergodic. The unique ergodicity
implies combinatorial properties for the Delone set. The dynamical system (Ω,Rd) is uniquely ergodic,
if and only if any Delone set X ∈ Ω has uniform patch frequencies, i.e., any patch P occurs with a
positive frequency; more precisely: Let XP be the set of occurrences of the patch P in X, and let
(DN )N be a nested sequence of d-cube DN of side N , then the following limit exists.

lim
N→∞

]XP ∩DN

vol(DN )
=: freq(P).

The number freq(P) is called the frequency of P. Notice the difference with the standard Birkhoff’s
ergodic Theorem that asserts a convergence only for almost all Delone set of the hull.

Theorem 5. Let X be an aperiodic linearly repetitive Delone set of Rd and Ω its hull. Then the
system (Ω,Rd) is uniquely ergodic.

The original proof is due to Lagarias and Pleasants in [LP03]. Actually for linearly repetitive system,
we can be much more precise and give informations on the speed of convergence of the limit. For
instance the following is a stronger result of Lagarias and Pleasants [LP03], that implies the unique
ergodicity.

Theorem 6 ([LP03]). Let X be a linearly repetitive Delone set of Rd. There exists a δ > 0 such
that, for every patch P of X, there is a number freq(P) so that∣∣∣∣XP ∩DomN

vol(DomN )
− freq(P)

∣∣∣∣ = O(N−δ),

where DomN is either a d-cube with side N or a ball of radius N . The O-constant may depend on
the patch P.

Open question 1. Given an α ∈ R, prove te existence of a FLC Delone set X ⊂ Rd that has uniform
patch frequencies such that for all patch P of X, freq(P) ∈ Z+ αZ.

3.3. Non-mixing properties. A translation invariant probability measure µ on a the hull Ω of
a Delone set is said to be measurably strongly mixing if for any Borel sets A,B in Ω,

lim
‖v‖→∞

µ((A− v) ∩B) = µ(A)µ(B).(3)

The next result is analogous to a theorem of Dekking and Keane [DK78] for substitutive subshifts.
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Property 5 ([APCC+15]). Let X be a linearly repetitive Delone set of Rd and Ω its hull. Then the
system (Ω,Rd) is not measurably strongly mixing.

3.4. A characterization of linear repetitivity. In [Len02], D. Lenz characterizes the sub-
shifts that admit a uniform subadditive ergodic Theorem by uniform positivity of weights. This can
be considered as an averaged version of linear repetitivity. For Delone systems, it is shown in [BBL13]
that the linear repetitivity is equivalent to positivity of weights plus some balancedness of the shape
of patterns. For a Voronöı cell V of a Delone set, let us define:

rint := sup{r > 0;V contains a ball of radius r}.
Rext := inf{R > 0;V is contained in a ball of radius R}.

The distorsion of V is the constant λ(V ) := Rext(V )/rint(V ).

Theorem 7 ([BBL13]). Let X be an aperiodic Delone set in Rd of finite type. Then X is linearly
repetitive if and only if for any R-patch P of X, R > 0: the set XP of occurrences of P is a (rP, RP)-
Delone set such that

(i) supP,x∈XP
λ(Vx) < +∞ where Vx denotes the Voronöı cell of x.

(ii) The Delone set X satisfies the positivity of weights :

inf
P is a R−patch ,R≥RX

lim inf
n→∞

]Bn(0) ∩XP

vol(Bn(0))
vol(BR(0)) > 0.

One can find in [BBL13] another similar equivalent condition to linear repetitivity. Notice that in
dimension d = 1, the distorsion of any compact Voronöı cell is equal to 1. Thus the condition (ii) is
equivalent to the linear repetitivity.

Exercice 8. Show the that a LR Delone set satisfies the conditions (i) and (ii) of Theorem 7

Exercice 9. This exercice is devoted to show the conditions are suffisant in Theorem 7. So we
consider that X is an FLC Delone set satisfying the conditions (i) and (ii).
2) Show that, if there exists a constant L > 1 such that for any R-patch P of X, its set of occurrences
is LR-uniformly discrete, then X is linearly repetitive.
3) Assume that X is aperiodic.

a) Show that for R big enough, for any R-patch P = R ∩BR(x) of X, if d denote the constant of
uniform discreteness of the set of occurrences XP, then d ≥ 3R. In all the following, we will assume
that R would be big enough so that the sentences have a sens. Let m be the maximal integer such
that R+m ≤ d/3. Let P0, . . . , Pm be the patches Pi = BR+i(x) ∩X.

b) Show that the sets of occurrences satisfy XPm ⊂ · · · ⊂ XP1 ⊂ XP0 = XP.
c) Prove that for every i ∈ {0, . . . ,m}, for each z ∈ XPi , we have XP ∩B2(R+i)(z) = {z}.
d) Deduce that for every i, j ∈ {1, . . . ,m}, i 6= j, we have for every z ∈ XPj , y ∈ XPi

(BR+j(z) \BR+j−1(z)) ∩ (BR+i(y) \BR+i−1(y)) = ∅
e) Deduce from this that for every integer n ≥ 0,

vol(Bn+R+m(0)) ≥
m∑
i=0

](Bn(0) ∩XPi)vol(BR+i(0) \BR+i−1(0)).

f) Deduce from this and condition (ii) that d/R is bounded uniformly in R.
g) Show that a Delone set satisfying (i) and (ii) is linearly repetitive.
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4. Factors of linearly repetitive system

A factor map between two Delone systems (Ω1,Rd) and (Ω2,Rd) is a continuous surjective map
π : Ω1 → Ω2 such that π(X − v) = π(X)− v, for every X ∈ Ω1 and v ∈ Rd.
In symbolic dynamics it is well-known that topological factor maps between subshifts are always given
by sliding-block-codes (Curtis-Hedlund-Lyndon theorem). An equivalent notion for the Delone system
is the pattern equivariant function π : Ω1 → Ω2: i.e. there exists a constant s0 > 0, s.t. if two Delone
sets X,Y ∈ Ω1 satisfy X ∩Bs0(0) = Y ∩Bs0(0) then π(X)∩{0} = π(Y )∩{0}. The scalar s0 is called
the range of π.

Exercice 10. 1) Show that for every R ≥ 0, X,Y ∈ Ω1,

X ∩BR+s0(0) = Y ∩BR+s0(0)⇒ π(X) ∩BR(0) = π(Y ) ∩BR(0).

2) Show that a pattern equivariant function π is continuous and commutes with the action (i.e. π(Y −
v) = π(Y )− v for all v ∈ Rd, Y ∈ Ω1).
3) Prove that the inverse of a bijective pattern equivariant function is still pattern equivariant.

However there are examples of factor maps on Delone systems that are not pattern equivariant func-
tions ([Pet99], [RS01]). Nevertheless, factor maps between Delone systems are not far from being
pattern equivariant [CD08, CDP10].

Lemma 6 ([CD08] Lem. 3). Let X1 and X2 be two Delone sets with finite local complexity. If
π : Ω(X1)→ Ω(X2) is a factor map and X1 is linearly repetitive, then X2 is linearly repetitive.

Exercice 11. Prove this lemma for a factor map that is a pattern equivariant function.

The next result says that factor maps between linearly repetitive Delone systems are finite-to-one. A
proof of that result in the context of subshifts and Delone systems can be found in [Dur00] and in
[CDP10, Proposition 5] respectively.

Property 6. Let X be a linearly repetitive Delone set with constant L. There exists a constant C > 0
(depending only on L) such that If X ′ is an aperiodic Delone set and π : (ΩX ,Rd) → (ΩX′ ,Rd) is a
factor map, then for every Y ∈ ΩX′ , the fiber π−1({Y }) contains at most C elements.

Moreover, the number of aperiodic Delone systems that are factors of at the system associated to a
linearly repetitive Delone set is finite.

Theorem 8 ([CDP10] Theo. 12). Let L > 1, d ≥ 1. There exists a constant N(L, d) such that any
linearly repetitive Delone set X of Rd with constant L, has at most N(L, d) non conjugate aperiodic
Delone system factors of (ΩX ,Rd).

Exercice 12. Let X be an aperiodic LR Delone set. Let Auts0(Ω(X)) denote the collection of bijective
pattern equivalent maps from the hull Ω(X) to itself, with an associated range smaller than s0 > 0.
1) Show that for every s0 > 0, Auts0(Ω(X)) is finite, and give a bound of its cardinality.
(hint: use Exercice 10)
2) Prove that the growth rate of the group geneerated by a finite set of bijective pattern equivariant
functions is at most polynomial.
The growth rate of a group generated by a set S is given for n ∈ N by

G(n) = ]{g1 . . . gn; gi ∈ S ∪ S−1 ∪ {Id}}.
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5. Bi-Lipschitz equivalence to a lattice

Let X1 and X2 be two Delone sets in Rd. We say that they are bi-Lipschitz equivalent if there exists
a homeomorphism φ : X1 → X2 and a constant ∆ ≥ 1 such that ∀x, x′ ∈ X,x 6= x′

1

∆
≤ ‖φ(x)− φ(x′)‖

‖x− x′‖
≤ ∆.

The map φ is then called a bi-Lipschitz homeomorphism between X1 and X2.
The problem to know whether two Delone sets are bi-Lipschitz equivalent was raised by Gromov in
[Gro93]: for the 2-dimensional Euclidean space: Is every Delone set in R2 bi-Lipschitz equivalent to
Z2? Counterexamples to this question were given independently by Burago and Kleiner [BK98] and
McMullen [McM98]. Moreover, McMullen also showed that when relaxing the bi-Lipschitz condition
to a Hölder one, all Delone set (with or without finite local complexity) in Rd are equivalent. Later,
Burago and Kleiner [BK02] gave a sufficient condition for a Delone set to be bi-Lipschitz equivalent
to Z2 and asked the following question: If one forms a Delone set in the plane by placing a point
in the center of each tile of a Penrose tiling, is the resulting set bi-Lipschitz equivalent to Z2? They
studied the more general question of knowing whether a Delone set arising from a cut-and-project
tiling is bi-Lipschitz equivalent to Z2 (recall that the Penrose tiling is also a cut-and project tiling
[dB81]) and solved it in some cases that do not include the case of Penrose tilings, thus leaving the
former question open. Solomon [Sol11] gave a positive answer for Penrose tiling by using the fact
that it can be constructed using substitutions. In fact, Solomon proved that each Delone set arising
from a primitive self-similar tiling in R2 is bi-Lipschitz to Z2.
The following result was proved in [APCG13].

Theorem 9. Every linearly repetitive Delone set in Rd is bi-Lipschitz equivalent to Zd.

Notice that Theorem 9 is trivial when the dimension d = 1 since, in this case, every Delone set (with
no extra assumptions) is bi-Lipschitz equivalent to Z. Solomon in [Sol14] also showed that for every
self-similar tiling of Rd of Pisot type there is a bounded displacement between its associated Delone
set X and βZd for a β > 0 (i.e. there is a bijection φ : X → βZd such that Φ− Id is bounded).
The strategy of the proof of Theorem 9 is the following. First consider the easy case where all the
Voronöı cells V of a Delone set X have an unit volume. Thus any finite union of N Voronöı cells
meet at least N unit squares, and conversely N unit squares meet at least N Voronöı cells. So by the
transfinite form of Hall’s marriage Lemma, there exists a bijection between the collection of Vornöı
cells and the units squares, so that any cell intersects its image. This define a map φ : X → Zd such
that φ− Id is bounded.
For the general case, we need to consider the measurable function f : Rd → R defined by

f(x) =
∑

y:x∈Vy

1

vol Vy
x ∈ Rd,

where Vy denotes the Voronöı cell of the point y ∈ X. If φ : Rd → Rd is a bi-Lipschitz map so that
its Jacobian determinant is f , standard calculus show us that the image φ(V ) of any Voronöı cell V
of X has volume 1. The proof of Theorem 9 consists then to generalize to all dimension d a sufficient
condition given by Burago and Kleiner [BK02] in dimension 2 to solve the equation det Dφ = f with
φ an unknown bi-Lipschitz map. This condition involves analytical tools and the density deviation of
the points of X with respect to its average. This last point is controlled by the Lagarias and Pleasants
Theorem 6.
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[CDP10] Maŕıa Isabel Cortez, Fabien Durand, and Samuel Petite, Linearly repetitive Delone systems have a finite

number of nonperiodic Delone system factors, Proc. Amer. Math. Soc. 138 (2010), no. 3, 1033–1046.
MR 2566569 (2011b:37026)

[CGSY99] Dominique Cerveau, Étienne Ghys, Nessim Sibony, and Jean-Christophe Yoccoz, Dynamique et géométrie
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