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A substitution on words : the Fibonacci substitution

Definition A substitution σ is a morphism of the free monoid

Positive morphism of the free group, no cancellations

Example

σ : 1 7→ 12, 2 7→ 1

1
12
121
12112
12112121

σ∞(1) = 121121211211212 · · ·



A substitution on words : the Fibonacci substitution
Definition A substitution σ is a morphism of the free monoid

Positive morphism of the free group, no cancellations

Example

σ : 1 7→ 12, 2 7→ 1 σ∞(1) = 121121211211212 · · ·

The Fibonacci word is a Sturmian word (cf. V. Delecroix’s lecture)
The Fibonacci word yields a quasicrystal



Quasiperiodicity and quasicrystals

Quasicrystals are solids discovered in 84 with an atomic structure
that is both ordered and aperiodic [Shechtman-Blech-Gratias-Cahn]

An aperiodic system may have long-range order

[What is... a Quasicrystal? M. Senechal]



Quasiperiodicity and quasicrystals
Quasicrystals are solids discovered in 84 with an atomic structure
that is both ordered and aperiodic [Shechtman-Blech-Gratias-Cahn]

An aperiodic system may have long-range order

(cf. Aperiodic tilings [Wang’61, Berger’66, Robinson’71,...)

[What is... a Quasicrystal? M. Senechal]



Quasiperiodicity and quasicrystals
Quasicrystals are solids discovered in 84 with an atomic structure
that is both ordered and aperiodic [Shechtman-Blech-Gratias-Cahn]

An aperiodic system may have long-range order

Quasicrystals produce a discrete diffraction diagram (=order)

Diffraction comes from regular spacing and local interactions
of the point set Λ (consider the relative positions Λ− Λ)

There are mainly two methods for producing quasicrystals

Substitutions

Cut and project schemes

[What is... a Quasicrystal? M. Senechal]



Cut and project schemes

Projection of a “plane” slicing through a higher dimensional lattice

The order comes from the lattice structure

The nonperiodicity comes from the irrationality of the normal
vector of the “plane”



Cut and project schemes

Projection of a “plane” slicing through a higher dimensional lattice

The order comes from the lattice structure

The nonperiodicity comes from the irrationality of the normal
vector of the “plane”

Sturmian words



Substitutions

Substitutions on words and symbolic dynamical systems

Substitutions on tiles : inflation/subdivision rules, tilings and
point sets

Tilings Encyclopedia http://tilings.math.uni-bielefeld.de/

[E. Harriss, D. Frettlöh]
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A substitution on words : the Fibonacci substitution

Definition A substitution σ is a morphism of the free monoid

Positive morphism of the free group, no cancellations

Example

σ : 1 7→ 12, 2 7→ 1 σ∞(1) = 121121211211212 · · ·

Why the terminology Fibonacci word?

σn+1(1) = σn(12) = σn(1)σn(2)

σn(2) = σn−1(1)

σn+1(1) = σn(1)σn−1(1)

The length of the word σn(1) satisfies the Fibonacci recurrence



Which substitutions do generate quasicrystals?



How to define a notion of order for an infinite word?

Consider the Fibonacci word

u = abaababaabaababaababaabaababaabaababaababaa · · ·

There is a simple algorithmic way to construct it

(cf. Kolmogorov complexity)
The complexity of a string is the length of the shortest

possible description of the string

But not all substitutions do produce quasicrystals



How to define a notion of order for an infinite word?
Consider the Fibonacci word

u = abaababaabaababaababaabaababaabaababaababaa · · ·

There are few local configurations = factors

A factor is a word made of consecutive occurrences of letters
ab is a factor, bb is not a factor of the Fibonacci word

But
· · · aaaaaaaaaaaabaaaaaaaaaaa · · ·

has as many factors of length n as

· · · abaababaabaababaababaabaababaabaababaababaa · · ·

The Fibonacci word has n + 1 factors of length n



How to define a notion of order for an infinite word?
Consider the Fibonacci word

u = abaababaabaababaababaabaababaabaababaababaa · · ·

Consider densities of occurrences of factors

Symbolic discrepancy

∆N = max
i∈A
||u0u1 . . . uN−1|i − N · fi |

if each letter i has frequency fi in u

fi = lim
N→∞

|u0 · · · uN−1|i
N

The Fibonacci word has bounded symbolic discrepancy

(cf. good equidistribution properties for real numbers having
bounded partial quotients)



1 Prove that every factor W of the Fibonacci word u can be
uniquely written as follows:

W = Aσ(V )B,

where V is a factor of the Fibonacci word, A ∈ {ε, a}, and
B = a, if the last letter of W is a, and B = ε, otherwise.

2 Prove that if W is a left special factor distinct from the empty
word, then there exists a unique left special factor V such
that W = σ(V )B, where B = a, if the last letter of W is a,
and B = ε, otherwise. Deduce the general form of the left
special factors.

3 Prove that the Fibonacci sequence is not ultimately periodic.

4 Prove that the complexity function of the Fibonacci word is
pu(n) = n + 1 for every n.



The Tribonacci substitution [Rauzy’82]

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

σ∞(1) : 12131211213121213 · · ·

Its incidence matrix is Mσ =

 1 1 1
1 0 0
0 1 0


The number of i in σn(j) is given by Mn

σ [i , j ]

Its characteristic polynomial is X 3 − X 2 − X − 1

It is primitive: there exists a power of Mσ which contains only
positive entries

 Perron-Frobenius theory

one expanding eigendirection
a contracting eigenplane
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Pisot number

Pisot-Vijayaraghavan number An algebraic integer is a Pisot
number if its algebraic conjugates λ (except itself) satisfy

|λ| < 1

Pisot substitution σ is primitive and its Perron–Frobenius
eigenvalue (for its incidence matrix) is a Pisot number



Pisot number
Pisot-Vijayaraghavan number An algebraic integer is a Pisot
number if its algebraic conjugates λ (except itself) satisfy

|λ| < 1

Pisot substitution σ is primitive and its Perron–Frobenius
eigenvalue (for its incidence matrix) is a Pisot number

Tribonacci substitution σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

Its incidence matrix is Mσ =

 1 1 1
1 0 0
0 1 0


Its characteristic polynomial is X 3 − X 2 − X − 1. Its
Perron-Frobenius eigenvalue is a Pisot number

Pisot + Perron-Frobenius  one expanding eigendirection
a contracting eigenplane



Pisot number

Pisot-Vijayaraghavan number An algebraic integer is a Pisot
number if its algebraic conjugates λ (except itself) satisfy

|λ| < 1

Pisot substitution σ is primitive and its Perron–Frobenius
eigenvalue (for its incidence matrix) is a Pisot number

Theorem [Pisot] If λ > 1 is an algebraic integer, then the distance
from λn to the nearest integer goes to zero iff λ is a Pisot number



Pisot number

Pisot-Vijayaraghavan number An algebraic integer is a Pisot
number if its algebraic conjugates λ (except itself) satisfy

|λ| < 1

Pisot substitution σ is primitive and its Perron–Frobenius
eigenvalue (for its incidence matrix) is a Pisot number

Fact Words generated by Pisot substitutions have bounded
symbolic discrepancy

∆N = max
i∈A
||u0u1 . . . uN−1|i − N · fi |

with fi = lim
N→∞

|u0 · · · uN−1|i
N



The Pisot substitution conjecture

Substitutive structure + Algebraic assumption (Pisot)

= Order



Symbolic discrepancy



Discrepancy of a sequence

Let (un)n be a sequence with values in [0, 1]

∆N = lim sup
I interval

|{Card {0 ≤ n ≤ N; un ∈ I} − Nµ(I )|



Symbolic discrepancy

Take a sequence (un)n with values in a finite alphabet A

The frequency fi of a letter i in u = (un)n∈N is defined as the
following limit, if it exists

fi = lim
n→∞

|u0 · · · uN−1|i
N

where |w |j stands for the number of occurrences of the letter j in
the factor w

Assume that each letter i has frequency fi in u

Symbolic discrepancy

∆N = max
i∈A
||u0u1 . . . uN−1|i − N · fi |
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|u0 · · · uN−1|i
N
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Symbolic dynamical system

Let u = (un) be an infinite word with values in the finite set A

The symbolic dynamical system generated by u is (Xu, S)

Xu := {Sn(u); n ∈ N} ⊂ AN

This is the set of infinite words whose factors belong to the set of
factors of u



Symbolic discrepancies

Xu := {Sn(u); n ∈ N} ⊂ AN

Xu is minimal if ∅ and Xu are the only closed shift-invariant
subsets of Xu

 Every infinite word v ∈ Xu has the same language as u

∆N = max
i∈A
||u0u1 . . . uN−1|i − N · fi |

∆̃N = lim sup
i∈A, k

||uk · · · uk+N−1|i − N · fi |

If Xu is minimal

∆̃N = lim supi∈A, k ||uk · · · uk+N−1|i − N · fi |
= lim supi∈A, w∈LN(u) ||w |i − N · fi |
= lim supi∈A, v∈Xu

||v0v1 . . . vN−1|i − N · fi |
LN(u) is the set of factors of u of length N

We can also consider factors w and not only letters
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Symbolic discrepancies
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Balancedness
An infinite word u ∈ AN is said to be (finitely) balanced if there
exists a constant C > 0 such that for any pair of factors of the
same length v ,w of u, and for any letter i ∈ A,

||v |i − |w |i | ≤ C

Fibonacci word σ : a 7→ ab, b 7→ a σ is called a substitution

a
ab
aba
abaab
abaababa

σ∞(a) = abaababaabaababaababaabaababaabaababaabab . . .

The factors of length 5 contain 3 or 4 a’s
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Remark [B. Adamczewski] There exists an infinite word
u ∈ {0, 1}N such that

u has has a frequency vector

∆N = O(g(N)) with g(N) = o(N)

for every integer N, ∆̃N = O(N)

Take

u = 01 0[g(1)]1[g(1)] 0101 0[g(2)]1[g(2)] · · · (01)n 0[g(n)]1[g(n)]

||u0 · · · uN−1|i − N/2| ≤ 1/2g(N)

u is not uniformly recurrent
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Equidistribution vs. well-equidistribution

Let u be an infinite word with values in the finite alphabet A

∆̃N = lim sup
i∈A, k

||uk · · · uk+N−1|i − N · fi |

u is well-distributed with respect to letters if ∆̃N = o(N)
 uniformly in k

The frequency of a factor w in u is defined as the limit when n
tends towards infinity, if it exists, of the number of occurrences of
w in u0u1 · · · un−1 divided by n

The infinite word u has uniform letter frequencies if, for every
factor w of u, the number of occurrences of w in uk · · · uk+n−1
divided by n has a limit when n tends to infinity, uniformly in k
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Balance and equidistribution

An infinite word u ∈ AN is (finitely) balanced if and only if

it has uniform letter frequencies

there exists a constant B such that for any factor w of u, we
have ||w |i − fi |w || ≤ B for all letter i in A

where fi is the frequency of i

Proof
Let u be an infinite word with vector frequency f and such that
||w |i − fi |w || ≤ B for every factor w and all letters i in A.
For every pair of factors w1 and w2 with the same length n, we
have

||w1|i − |w2|i | ≤ ||w1|i − nfi |+ ||w2|i − nfi | ≤ 2B

Hence u is 2B-balanced
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Finite balancedness implies the existence of uniform letter
frequencies

Proof Assume that u is C -balanced and fix a letter i

Let Np be such that for every word of length p of u, the number of
occurrences of the letter i belongs to the set

{Np,N + 1, · · · ,Np + C}

The sequence (Np/p)p∈N is a Cauchy sequence. Indeed consider a
factor w of length pq

pNq ≤ |w |i ≤ pNq + pC , qNp ≤ |w |i ≤ qNp + qC .

−C/p ≤ Np/p − Nq/q ≤ C/q

Let fi = limNq/q

−C ≤ Np − pfi ≤ 0 (q →∞)

Then, for any factor w∣∣∣∣ |w |i|w | − fi

∣∣∣∣ ≤ C

|w |
 uniform frequencies
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Finite balancedness implies the existence of uniform letter
frequencies

If u has letter frequencies, then u is finitely balanced if and
only if its discrepancy ∆(u) is finite



Let σ be a primitive substitution and λ be its PF eigenvalue.

Let d ′ stand for the number of distinct eigenvalues of Mσ.

Let λi , for i = 1, · · · , d ′, stand for the eigenvalues of σ, with
λ1 = λ, and let αi + 1 stand for their multiplicities in the
minimal polynomial of the incidence matrix Mσ.

We order them as follows. Let i , k such that 2 ≤ i < k ≤ d ′.
If |λi | 6= |λk |, then |λi | > |λk |.
If |λi | = |λk |, then αi ≥ αk . We also add that if
|λi | = |λk | = 1, and αi = αk , if λi is not a root of unity and
λk is a root of unity, then i < k .



Theorem Primitive Pisot substitutions are balanced, and have finite
discrepancy.
Proof Let σ be a primitive Pisot substitution over the alphabet A.
Let us prove that σ has finite discrepancy. Let (fi )i stand for its
letter frequency vector. We consider the abelianization map l
defined as the map

l : A∗ → Nd , w 7→ (|w |1, |w |2, · · · , |w |d).

l(σ(w)) = Mσ l(w)

We first consider a word w of the form w = σn(j), for j letter in A.
The sequence (|σn(j)|i )n satisfies a linear recurrence provided by
the minimal polynomial of Mσ.

|σn(j)|i = Ci ,jλ
n + O(nα2 |λ2|n).

By applying the Perron–Frobenius Theorem, one checks that there
exists Cj such that Ci ,j = Cj fi for all i , hence

|σn(j)|i = Cj fiλ
n + O(nα2 |λ2|n).



|σn(j)|i = Cj fiλ
n + O(nα2 |λ2|n).

We then deduce from
∑

i fi = 1 that

|σn(j)|i − fi |σn(j)| = O(nα2 |λ2|n).

It remains to check that this result also holds for prefixes of the
fixed point u. Indeed, it is easy to prove that any prefix w of u can
be expanded as:

w = σk(wk)σk−1(wk−1) . . .w0,

where the wi belong to a finite set of words.This numeration is
called Dumont-Thomas numeration.



Theorem[Adamczewski] Let σ be a primitive substitution. Let u be
a fixed point of σ.

If |λ2| < 1, then the discrepancy ∆(u) is finite.

If |λ2| > 1, then ∆n(u) = (O ∩ Ω)((log n)α2n(logλ |λ2])).

If |λ2| = 1, and λ2 is not a root of unity, then

∆n(u) = (O ∩ Ω)((log n)α2+1).

If λ2 is a root of unity, then either

∆n(u) = (O∩Ω)((log n)α2+1), or ∆n(u) = (O∩Ω)((log n)α2).



In particular there exist balanced fixed points of substitutions
for which |θ2| = 1. All eigenvalues of modulus one of the
incidence matrix have to be roots of unity.

Observe that the Thue-Morse word is 2-balanced, but if one
considers generalized balances with respect to factors of
length 2 instead of letters, then it is not balanced anymore.



Frequencies and measures

Xu := {Sn(u); n ∈ N} ⊂ AN

Having frequencies is a property of the infinite word u while
having uniform frequencies is a property of the associated
language or shift Xu



Frequencies and measures

Xu := {Sn(u); n ∈ N} ⊂ AN

A probability measure µ on Xu is said invariant if
µ(S−1A) = µ(A) for all measurable subset A ⊂ X

An invariant probability measure on a shift X is said ergodic if
any shift-invariant measurable set has either measure 0 or 1

The property of uniform frequency of factors for a shift X is
equivalent to unique ergodicity: there exists a unique
shift-invariant probability measure on X



Frequencies and measures

Xu := {Sn(u); n ∈ N} ⊂ AN

Having frequencies is a property of the infinite word u while
having uniform frequencies is a property of the associated
language or shift Xu

Balancedness is a property of the associated shift and may be
thought as a strong form of unique ergodicity



Birkhoff sums
Let µ is an ergodic measure on Xu. The Birkhoff Ergodic theorem
says that for µ-a.e. x and for f ∈ L1(Xu,R)

lim
n

1

n

n−1∑
j=0

f (T jx) =

∫
fdµ

The mean behaviour along an orbit=
the mean value of f with respect to µ

µ-almost every infinite word in Xu has frequency µ[w ]

[w ] = {u ∈ X ; u0 . . . un−1 = w}

but this frequency is not necessarily uniform

If Xu is uniquely ergodic, the unique invariant measure on Xu is
ergodic and the convergence is uniform for all words in Xu



Theorem Let u be a recurrent sequence s.t.

pu(n) ≤ Cn ∀n

Then there exists a finite set F such that, if

D =
⋃
n∈Z

SnF

S is one-to-one from Xu \ D to Xu \ D.

Proof One has pu(n + 1)− pu(n) ≤ C for all n.
Since u is recurrent, every word w of length n has at least one left
extension
There can be no more than C words of length n which have two or
more left extensions.
Let F be the set of infinite words v in Xu such that S−1v has at
least two elements.
If the word w = (wn)n∈N ∈ F , then there exists a 6= b such that
the sequences aw0w1 . . . and bw0w1 . . . belongs to Xu, and hence
the word w0 . . .wn has at least two left extensions for every n.
So F has at most C elements.



Spectrum

Eigenvalue Let (X ,T ) be a topological dynamical system



Spectrum

Eigenvalue Let (X ,T ) be a topological dynamical system

T is a homeomorphism acting on the compact space X

T = R/Z Rα : T 7→ T, x 7→ x + α



Spectrum

Eigenvalue Let (X ,T ) be a topological dynamical system
A non-zero continuous function f ∈ C(X ) with complex values is
an eigenfunction for T if there exists λ ∈ C such that

∀x ∈ X , f (Tx) = λf (x)

Discrete spectrum (X ,T ) is said to have pure discrete spectrum
if its eigenfunctions span C(X )



Spectrum

Eigenvalue Let (X ,T ) be a topological dynamical system

Example
Rα : T/Z→ T/Z, x 7→ x + α

fk : x 7→ e2iπkx , fk ◦ Rα = e2iπkαfk



Spectrum
Eigenvalue Let (X ,T ) be a topological dynamical system

Theorem [Von Neumann] Any invertible and minimal topological
dynamical system minimal with topological discrete spectrum is
isomorphic to a minimal translation on a compact abelian group

Example In the Fibonacci case σ : 1 7→ 12, 2 7→ 1

(Xσ, S) is isomorphic to (R/Z,R 1+
√
5

2

)

Xσ
S−→ Xσy y

T −→
Rα

T



The Pisot substitution conjecture

Substitutive structure + Algebraic assumption (Pisot)

= Order (discrete spectrum)

Discrete spectrum = translation on a compact group



Substitutive dynamical systems

Let σ be a primitive substitution over A.
The symbolic dynamical system generated by σ is (Xσ,S)

Xσ := {Sn(u); n ∈ N} ⊂ AN



Substitutive dynamical systems

Let σ be a primitive substitution over A.
The symbolic dynamical system generated by σ is (Xσ,S)

Xσ := {Sn(u); n ∈ N} ⊂ AN

Question Under which conditions is it possible to give a geometric
representation of a substitutive dynamical system as a translation
on a compact abelian group? (discrete spectrum)



Substitutive dynamical systems

Let σ be a primitive substitution over A.
The symbolic dynamical system generated by σ is (Xσ,S)

Xσ := {Sn(u); n ∈ N} ⊂ AN

The Pisot substitution conjecture Dates back to the 80’s

[Bombieri-Taylor, Rauzy,Thurston]

If σ is a Pisot irreducible substitution, then (Xσ,S) has discrete
spectrum



Substitutive dynamical systems
Let σ be a primitive substitution over A.
The symbolic dynamical system generated by σ is (Xσ,S)

Xσ := {Sn(u); n ∈ N} ⊂ AN

Example In the Fibonacci case

σ : 1 7→ 12, 2 7→ 1

(Xσ,S) is isomorphic to (R/Z,R 1+
√
5

2

)

R 1+
√
5

2

: x 7→ x +
1 +
√

5

2
mod 1



Substitutive dynamical systems

Let σ be a primitive substitution over A.
The symbolic dynamical system generated by σ is (Xσ,S)

Xσ := {Sn(u); n ∈ N} ⊂ AN

The Pisot substitution conjecture
If σ is a Pisot irreducible substitution, then (Xσ,S) has discrete
spectrum

The conjecture is proved for two-letter alphabets

[Host, Barge-Diamond, Hollander-Solomyak]



Tribonacci’s substitution [Rauzy ’82]

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

Xσ
S−→ Xσy y

T2 −→
+(1/β,1/β2)

T2

Question Is it possible to give a geometric representation of the
associated substitutive dynamical system Xσ as a Kronecker map
= translation on an abelian compact group?

Yes! (Xσ,S) is isomorphic to a translation on T2 = R2/Z2

Question How to produce explicitly a fundamental domain?

Rauzy fractal G. Rauzy introduced in the 80’s a compact set with
fractal boundary that tiles the plane which provides a geometric
representation of (Xσ, S)  Thurston for beta-numeration



Tribonacci dynamics and Tribonacci Kronecker map

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

Theorem [Rauzy’82] The symbolic dynamical system (Xσ,S) is
measure-theoretically isomorphic to the translation Rβ on the
two-dimensional torus T2

Rβ : T2 → T2, x 7→ x + (1/β, 1/β2)

Markov partition for the toral automorphism

 1 1 1
1 0 0
0 1 0


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The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution

σ : 1 7→ 12, 2 7→ 3, 3 7→ 1

121312112131212131211213 · · · π projection along the
expanding eigenline
onto the contracting
plane of the incidence
matrix of Mσ

π(~e1)
π(~e2)

π(~e3)

Thanks to T. Jolivet for the slides
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The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution

σ : 1 7→ 12, 2 7→ 3, 3 7→ 1

121312112131212131211213 · · ·
π(~e1 + ~e2)

π projection along the
expanding eigenline
onto the contracting
plane of the incidence
matrix of Mσ

π(~e1)
π(~e2)
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σ : 1 7→ 12, 2 7→ 3, 3 7→ 1

121312112131212131211213 · · ·
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π projection along the
expanding eigenline
onto the contracting
plane of the incidence
matrix of Mσ

π(~e1)
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Rauzy fractal and dynamics

One first defines an exchange of pieces acting on the Rauzy fractal
The subtiles are disjoint in measure (the proof uses the associated
graph-directed Iterated Function System)

π projection along the expanding eigenline onto the contracting
plane of the incidence matrix Mσ

The translation vectors are the projections of the canonical basis
vectors π(~ei )



Rauzy fractal and dynamics
One first defines an exchange of pieces acting on the Rauzy fractal.

This exchange of pieces factorizes into a translation of T2

This due to the fact that the Rauzy fractal tiles periodically the
plane



Dynamics of Pisot substitutions

Periodic tiling
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Dynamics of Pisot substitutions

Periodic tiling ←→ partition of the torus T2
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,
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β2
))

. . . 1213121121 . . . ∈ Xσ



Why do we get fractals for d ≥ 3?

The pieces of the Rauzy fractal are bounded remainder sets

They produce atoms of Markov partitions for toral
automorphisms

They capture simultaneous approximation properties



Bounded remainder sets and Kronecker sequences

Let α = (α1, . . . , αd) ∈ [0, 1]d

with 1, α1, · · · , αd Q-linearly independent

We consider the Kronecker sequence

({nα1}, . . . , {nαd})n

associated with the translation over Td = (R/Z)d

Rα : Td 7→ Td , x 7→ x + α

α = (α1, · · · , αd)

Bounded remainder set A set X for which there exists C > 0 s.t.
for all N

|Card{0 ≤ n ≤ N;Rn
α(0) ∈ X} − Nµ(X )| ≤ C
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Bounded remainder sets
Case d = 1

Theorem [Kesten’66] Intervals that are bounded remainder sets are
the intervals with length in Z + αZ

General dimension d

Theorem [Liardet’87] There are no nontrivial boxes that are
bounded remainder sets

Boxes are not bounded remainder sets

It is possible to find polytopes that are bounded remainder sets for
any irrational rotation in any dimension

[Haynes-Koivusalo,Grepstad-Lev]

Renormalization?

How well can one approximate a box by bounded remainder
sets?
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Bounded remainder sets
Case d = 1

Theorem [Kesten’66] Intervals that are bounded remainder sets are
the intervals with length in Z + αZ

General dimension d

Theorem [Liardet’87] There are no nontrivial boxes that are
bounded remainder sets

Boxes are not bounded remainder sets

It is possible to find polytopes that are bounded remainder sets for
any irrational rotation in any dimension

[Haynes-Koivusalo,Grepstad-Lev]

Renormalization?
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Pisot dynamcis

Bounded remainder set A set X for which there exists C > 0 s.t.
for all N

|Card{0 ≤ n ≤ N;Rn
α(0) ∈ X} − Nµ(X )| ≤ C

σ : 1 7→ 12, 2 7→ 3, 3 7→ 1

Fact The pieces of the Rauzy fractal are bounded remainder sets



Variations around Rauzy fractals
One can define Rauzy fractals for substitutions over

Delone sets/cut-and-project schemes
[Lee,Moody,Solomyak,Sing,Frettlöh,Baake etc.]

trees [Bressaud-Jullian]

on the free group [Arnoux-B.-Hillion-Siegel, Coulbois-Hillion]

and for numeration dynamical systems defined in terms of Pisot
numbers

beta-numeration [Thurston, Akiyama, Ei-Ito-Rao,B.-Siegel,
Minervino-Steiner, etc.]

abstract numerations [B.-Rigo]

Shift Radix Systems [B.-Siegel-Steiner-Surer-Thuswaldner]

and even

Selmer numbers [Kenyon-Vershik]

in codimension 2 [Arnoux-Furukado-Harris-Ito]

Pisot families [Akiyama-Lee, Barge-Stimac-Williams]

nonalgebraic parameters  S-adic Rauzy fractals
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Beyond the Pisot

substitution conjecture



How to reach nonalgebraic parameters?

Theorem [Rauzy’82]

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

(Xσ,S) is measure-theoretically isomorphic to the translation Rβ
on the two-dimensional torus T2

Rβ : T2 → T2, x 7→ x + (1/β, 1/β2)

We want to find symbolic realizations for toral translations

We want to reach nonalgebraic parameters

We consider not only one substitution



How to reach nonalgebraic parameters?
Theorem [Rauzy’82]

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

(Xσ,S) is measure-theoretically isomorphic to the translation Rβ
on the two-dimensional torus T2

Rβ : T2 → T2, x 7→ x + (1/β, 1/β2)

We want to find symbolic realizations for toral translations

We want to reach nonalgebraic parameters by considering
convergent products of matrices

We consider not only one substitution but a sequence of
substitutions Non-stationary dynamics

 Multidimensional continued fractions algorithms/Generalized
Euclid algorithms



S -adic words



S-adic expansions

Let S be a set S of substitutions

Let s = (σn)n∈N ∈ SN, with σn : A∗n+1 → A∗n, be a sequence
of substitutions

Let (an)n∈N be a sequence of letters with an ∈ An for all n

We say that the infinite word u ∈ AN admits ((σn, an))n as an
S-adic representation if

u = lim
n→∞

σ0σ1 · · ·σn−1(an)
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Let S be a set S of substitutions

Let s = (σn)n∈N ∈ SN, with σn : A∗n+1 → A∗n, be a sequence
of substitutions

Let (an)n∈N be a sequence of letters with an ∈ An for all n

We say that the infinite word u ∈ AN admits ((σn, an))n as an
S-adic representation if

u = lim
n→∞

σ0σ1 · · ·σn−1(an)

The terminology comes from Vershik adic transformations
Bratteli diagrams

S stands for substitution, adic for the inverse limit
powers of the same substitution= partial quotients



S-adic expansions

Let S be a set S of substitutions

Let s = (σn)n∈N ∈ SN, with σn : A∗n+1 → A∗n, be a sequence
of substitutions

Let (an)n∈N be a sequence of letters with an ∈ An for all n

We say that the infinite word u ∈ AN admits ((σn, an))n as an
S-adic representation if

u = lim
n→∞

σ0σ1 · · ·σn−1(an)

The sequence s is called the directive sequence and the
sequences of letters (an)n will only play a minor role compared
to the directive sequence.

If the set S is finite, it makes no difference to consider a
constant alphabet (i.e., A∗n = A∗ for all n and for all
substitution σ in S).



First remarks

Without further restrictions, to be S-adic is not a property of
the sequence but a way to construct it

An S-adic representation defined by the directive sequence
(σn)n∈N is everywhere growing if for any sequence of letters
(an)n, one has

lim
n→+∞

|σ0σ1 · · ·σn−1(an)| = +∞

Substitutions are non-erasing: the image of any letter is
different from the empty word



Every sequence is S-adic [Cassaigne]

Let u = u0u1u2 · · · ∈ AN. Consider the alphabet A ∪ {`}. Let

σa(b) = b, ∀b ∈ A, σa(`) = `a

τu0(a) = a,∀a ∈ A, τ(`) = u0.

One has
u = lim

n→+∞
τu0 ◦ σu1 ◦ σu2 ◦ · · · ◦ σun(`)

It is not everywhere growing

|τu0 ◦ σu1 ◦ · · · ◦ σun(`)| → ∞

but for all a ∈ A and for all n

|τu0 ◦ σu1 ◦ · · · ◦ σun(a)| = 1



Dictionary

S-adic expansion

Unique ergodicity

Linear recurrence

Balance and Pisot
properties

Continued fraction

Convergence

Bounded partial
quotients

Strong convergence



Examples



Sturmian words

A = {a, b}

τa : a 7→ a, b 7→ ab, τb : a 7→ ba, b 7→ b

Let (in) ∈ {a, b}N. The following limits

u = lim
n→∞

τi0τi1 · · · τin−1(a) = lim
n→∞

τi0τi1 · · · τin−1(b)

exist and coincide whenever the directive sequence (in)n is not
ultimately constant.
This latter condition is equivalent to the everywhere growing
property.
The infinite words thus produced belong to the class of Sturmian
words.

More generally, a Sturmian word is an infinite word whose set of
factors coincides with the set of factors of a sequence of the
previous form, with the sequence (in)n≥0 being not ultimately
constant.



Sturmian words

A = {a, b}

τa : a 7→ a, b 7→ ab, τb : a 7→ ba, b 7→ b

Let (in) ∈ {a, b}N. The following limits

u = lim
n→∞

τi0τi1 · · · τin−1(a) = lim
n→∞

τi0τi1 · · · τin−1(b)

exist and coincide whenever the directive sequence (in)n is not
ultimately constant.
This latter condition is equivalent to the everywhere growing
property.
The infinite words thus produced belong to the class of Sturmian
words.
More generally, a Sturmian word is an infinite word whose set of
factors coincides with the set of factors of a sequence of the
previous form, with the sequence (in)n≥0 being not ultimately
constant.



Sturmian words and continued fractions

The incidence matrix of σ is the square matrix Mσ = (mi ,j)i ,j with
entries mi ,j := |σ(j)|i . It is a non-negative integer matrix.

τa : a 7→ a, b 7→ ab, τb : a 7→ ba, b 7→ b

Mτa =

[
1 1
0 1

]
Mτb =

[
1 0
1 1

]
u = lim

n→∞
τi0τi1 · · · τin−1(a)

with the directive sequence (in)n being not ultimately constant.



Sturmian words and continued fractions

τa : a 7→ a, b 7→ ab, τb : a 7→ ba, b 7→ b

Mτa =

[
1 1
0 1

]
Mτb =

[
1 0
1 1

]
u = lim

n→∞
τi0τi1 · · · τin−1(a)

with the directive sequence (in)n being not ultimately constant.

There exists α ∈ (0, 1) such that limit cone satisfies

⋂
n

Mτi0
· · ·MτinR

d
+ = R+

[
α
1− α

]



Sturmian words and continued fractions

τa : a 7→ a, b 7→ ab, τb : a 7→ ba, b 7→ b

Mτa =

[
1 1
0 1

]
Mτb =

[
1 0
1 1

]
u = lim

n→∞
τi0τi1 · · · τin−1(a)

with the directive sequence (in)n being not ultimately constant.

The frequency of a letter i in u is defined as the limit when n tends
towards infinity, if it exists, of the number of occurrences of i in
u0u1 · · · un−1 divided by n.

⋂
n

Mτi0
· · ·MτinR

d
+ = R+

[
α
1− α

]
α is the frequency of a’s and the sequence (in) is produced by the

continued faction expansion of α



Arnoux-Rauzy words

Let A = {1, 2, . . . , d}. We define the Arnoux-Rauzy
substitutions as

µi : i 7→ i , j 7→ ji for j ∈ A \ {i} .

An Arnoux-Rauzy word is an infinite word ω ∈ AN whose set
of factors coincides with the set of factors of a sequence of
the form

lim
n→∞

µi0µi1 · · ·µin(1),

where the sequence (in)n≥0 ∈ AN is such that every letter
in A occurs infinitely often in (in)n≥0.
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d = 3

µ1 : 1 7→ 1
2 7→ 21
3 7→ 31

µ2 : 1 7→ 12
2 7→ 2
3 7→ 32

µ3 : 1 7→ 13
2 7→ 23
3 7→ 3



Arnoux-Rauzy words

Let A = {1, 2, . . . , d}. We define the Arnoux-Rauzy
substitutions as

µi : i 7→ i , j 7→ ji for j ∈ A \ {i} .

An Arnoux-Rauzy word is an infinite word ω ∈ AN whose set
of factors coincides with the set of factors of a sequence of
the form

lim
n→∞

µi0µi1 · · ·µin(1),

where the sequence (in)n≥0 ∈ AN is such that every letter
in A occurs infinitely often in (in)n≥0.

Equivalent definition

p(n) = (d − 1)n + 1 factors of length n for every n
one right and one left special factor of each length (w right
special=w has several extensions: wa and wb factors with
a 6= b)
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Arnoux-Rauzy words

µ1 : 1 7→ 1
2 7→ 21
3 7→ 31

µ2 : 1 7→ 12
2 7→ 2
3 7→ 32

µ3 : 1 7→ 13
2 7→ 23
3 7→ 3

u = lim
n→∞

µi0µi1 · · ·µin(1)

and every letter in {1, 2, 3} occurs infinitely often in (in)n≥0

Example The Tribonacci substitution and its fixed point



Arnoux-Rauzy words

µ1 : 1 7→ 1
2 7→ 21
3 7→ 31

µ2 : 1 7→ 12
2 7→ 2
3 7→ 32

µ3 : 1 7→ 13
2 7→ 23
3 7→ 3

u = lim
n→∞

µi0µi1 · · ·µin(1)

and every letter in {1, 2, 3} occurs infinitely often in (in)n≥0

• The set of the letter density vectors of AR words has zero
measure

• They code particular systems of isometries (pseudogroups of
rotations) [Arnoux-Yoccoz, Novikov, Dynnikov-De Leo, Levitt
-Yoccoz, etc.]



Arnoux-Rauzy words

µ1 : 1 7→ 1
2 7→ 21
3 7→ 31

µ2 : 1 7→ 12
2 7→ 2
3 7→ 32
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2 7→ 23
3 7→ 3

u = lim
n→∞

µi0µi1 · · ·µin(1)
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Arnoux-Rauzy words

µ1 : 1 7→ 1
2 7→ 21
3 7→ 31

µ2 : 1 7→ 12
2 7→ 2
3 7→ 32

µ3 : 1 7→ 13
2 7→ 23
3 7→ 3

u = lim
n→∞

µi0µi1 · · ·µin(1)

and every letter in {1, 2, 3} occurs infinitely often in (in)n≥0

• There exist AR words that do not have bounded symbolic
discrepancy [Cassaigne-Ferenczi-Messaoudi]

• There exist AR words that are (measure-theoretically) weak
mixing [Cassaigne-Ferenczi-Messaoudi]



S-adic expansions and factor complexity

Let X be a symbolic dynamical system.
Let pX (n)= number of factors of length n (factor complexity)

Theorem [Cassaigne] A symbolic dynamical system X has at most
linear complexity

∃C , pX (n) ≤ CN, ∀n

if and only if pX (n + 1)− pX (n) is bounded

Theorem [Ferenczi] Let X be a minimal symbolic system on a
finite alphabet A such that its complexity function pX (n) is at
most linear
Then u admits an everywhere growing S-adic representation

See also [Durand, Leroy, Richomme]



Alphabet growth and entropy [T. Monteil]

Theorem Let (σn)n be a sequence of substitutions, with
σn : A∗n+1 → A∗n, and let X be the associated S-adic shift. Let

β−n = min
a∈An

|σ0 ◦ σ1 ◦ · · · ◦ σn−1(a)|.

Then, the toplogical entropy hX of X satisfies

hX ≤ inf
n≥0

log CardAn

β−n
.

In particular, if (σn)n is everywhere growing and the alphabets An

are of bounded cardinality, then X has zero entropy.



Proof

Let n be fixed. Let Wn = {σ0 . . . σn−1(i) | i ∈ An} and let
β+n = maxi∈An |σ[0,n)(i)|. By definition, any factor w in X can be
decomposed as w = pv1 . . . vks where the vj belong to Wn, p is a
suffix of an element of Wn and s a prefix. For any N large enough,
any factor w of length N is a factor of a concatenation of at most
N
β−n

+ 2 words in Wn (we include p and s). By taking into account

the possible prefixes, there are at most (CardAn)
N

β−n
+2
· (β+n )

words of length N, which gives

log pX (N)

N
≤ inf

n≥0

((
1

β−n
+

2

N

)
log CardAn +

log β+n
N

)
.



S-adic conjecture

Everywhere growing S-adic representations with bounded
alphabets only provide words with zero entropy.

A restriction on S-adic representations yielding to linear
complexity cannot be formulated uniquely in terms of the set
S of substitutions: there exist sets of substitutions which
produce infinite words that have at most linear complexity
function, or not, depending on the directive sequences.



S-adicity and complexity [Durand-Leroy-Richomme]

Let S = {σ, τ} with

σ : a 7→ aab, b 7→ b, τ : a 7→ ab, b 7→ ba

τ is the Thue-Morse substitution

σ has quadratic complexity

Let (kn)n be a sequence of non-negative integers, and let u be the
S-adic word

u = lim
n→∞

σk0 τ σk1 τ · · · τ σkn(a).

Then, the S-adic word u has linear factor complexity if and only if
the sequence (kn)n is bounded



S-adic conjecture

Everywhere growing S-adic representations with bounded
alphabets only provide words with zero entropy.

A restriction on S-adic representations yielding to linear
complexity cannot be formulated uniquely in terms of the set
S of substitutions: there exist sets of substitutions which
produce infinite words that have at most linear complexity
function, or not, depending on the directive sequences

The S-adic conjecture thus consists in providing a
characterization of the class of S-adic expansions that
generate only words with linear factor complexity by
formulating a suitable set of conditions on the set S of
substitutions together with the associated directive sequences.



S-adic conjecture

Everywhere growing S-adic representations with bounded
alphabets only provide words with zero entropy.

A restriction on S-adic representations yielding to linear
complexity cannot be formulated uniquely in terms of the set
S of substitutions: there exist sets of substitutions which
produce infinite words that have at most linear complexity
function, or not, depending on the directive sequences

The S-adic conjecture thus consists in providing a
characterization of the class of S-adic expansions that
generate only words with linear factor complexity by
formulating a suitable set of conditions on the set S of
substitutions together with the associated directive sequences.



S-adicity and complexity [Cassaigne]
There exists an S-adic sequence with an S-adic expansion having

bounded partial quotients (every substitution comes back with
bounded gaps in the S-adic expansion),
with each substitution being primitive

whose complexity is quadratic

Let
σ : a 7→ aab, b 7→ b, µ : a 7→ b, b 7→ a.

u = lim
n

σ ◦ µ ◦ σ2 ◦ µ ◦ σ3 ◦ µ ◦ σ4 ◦ · · · ◦ σn ◦ µ(b)

One has

u = lim
n→+∞

(σ◦µ◦σ)◦(σ◦µ◦σ)◦σ◦(σ◦µ◦σ) · · ·◦(σ◦µ◦σ)◦σn◦(σ◦µ◦σ) · · ·

The substitution σ has quadratic complexity and the substitution
σ ◦ µ ◦ σ is primitive
The substitutions σ ◦ µ and µ ◦ σ are primitive and appear with
bounded gaps

The complexity of u is quadratic
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Primitivity and recurrence



Primitivity

The incidence matrix of σ is the square matrix Mσ = (mi ,j)i ,j with
entries mi ,j := |σ(j)|i . It is a non-negative integer matrix.

An S-adic expansion is said weakly primitive if for each n,
there exists r such that the substitution σn · · · σn+r is
positive.

An S-adic expansion is said strongly primitive if there exists r
such that the substitution σn · · · σn+r is positive, for each n.



Minimality and weak primitivity

If σ is a primitive substitution, then the dynamical system (Xσ,T )
is minimal

Theorem An infinite word u is uniformly recurrent (or the shift Xu

is minimal) if and only if it admits a weakly primitive S-adic
representation.



Minimality and weak primitivity

If σ is a primitive substitution, then the dynamical system (Xσ,T )
is minimal

Theorem An infinite word u is uniformly recurrent (or the shift Xu

is minimal) if and only if it admits a weakly primitive S-adic
representation.

Proof Let us prove that an S-adic word with weakly primitive
expansion is minimal. Let (σn)n be weakly primitive. It is
everywhere growing. Consider a factor w of the language. It
occurs in some σ[0,n)(i) for some integer n ≥ 0 and some letter
i ∈ A. By definition of weak primitivity, there exists an integer r
such that σ[n,n+r) is positive. Hence w appears in all images of
letters by σ[0,n+r) which implies uniform recurrence.



Return words

Let u be a given recurrent word (every factor occurs with bounded
gaps) and let w be a factor of u.

A return word over w is a word v such that vw is a factor of u, w
is a prefix of vw and w has exactly two occurrences in vw



Return words

Let u be a given recurrent word (every factor occurs with bounded
gaps) and let w be a factor of u.

A return word over w is a word v such that vw is a factor of u, w
is a prefix of vw and w has exactly two occurrences in vw

Example Fibonacci word

a|ba|a|ba|ba|a|ba|a|ba|ba|a|ba|ba|a|ba|a|ba|ba|a|ba|a|ba|ba|a|ba · · ·

a and ab are return words to a



S-adic expansions by return words

Let u be a uniformly recurrent word on A0 (every factor
occurs with bounded gaps)

Let w be a non-empty factor of u.

A return word of w is a word separating two successive
occurrences of the word w in u (possibly with overlap).

By coding the initial word u with these return words, one
obtains an infinite word called the derived word, defined on a
finite alphabet, and still uniformly recurrent.

Indeed, start with the letter u0.

There exist finitely many return words to u0. Let w1,
w2, . . . ,wd1 be these return words, and consider the
associated morphism σ0 : A1 → A0, i 7→ wi , with
A1 = {1, . . . , d1}. Then, there exists a unique word u′ on A1

such that u = σ0(u′). Moreover, u′ is uniformly recurrent.

It is hence possible to repeat the construction and one obtains
an S-adic representation of u.



S-adic expansions by return words

Let u be a uniformly recurrent word on A0 (every factor
occurs with bounded gaps)

Let w be a non-empty factor of u.

A return word of w is a word separating two successive
occurrences of the word w in u (possibly with overlap).

By coding the initial word u with these return words, one
obtains an infinite word called the derived word, defined on a
finite alphabet, and still uniformly recurrent.

Indeed, start with the letter u0.

There exist finitely many return words to u0. Let w1,
w2, . . . ,wd1 be these return words, and consider the
associated morphism σ0 : A1 → A0, i 7→ wi , with
A1 = {1, . . . , d1}. Then, there exists a unique word u′ on A1

such that u = σ0(u′). Moreover, u′ is uniformly recurrent.

It is hence possible to repeat the construction and one obtains
an S-adic representation of u.



S-adic expansions by return words

The alphabets of this representation are a priori of unbounded
size.

In the particular case where u is a primitive substitutive word,
then the set of derived words is finite. This is even a
characterization [Durand]

Theorem A uniformly recurrent word is substitutive if and only
if the set of its derived words is finite.



Minimality and weak primitivity

Theorem An infinite word u is uniformly recurrent (or the shift Xu

is minimal) if and only if it admits a weakly primitive S-adic
representation.

Proof
Conversely, let u be a uniformly recurrent sequence on A = A0.
Recall that a return word of a factor w is a word separating two
successive occurrences of the factor w in u. Let us code the initial
word u with these return words; one obtains an infinite word u′ on
a finite alphabet that is still uniformly recurrent (u′ is a derived
word). By repeating the construction, one obtains an S-adic
representation of u. That S-adic expansion is weakly primitive.



Tilings



Repetitivity

Fact Arithmetic discrete planes are repetitive (factors occur with
bounded gaps)

Recurrence function Let N be the smallest integer N such that
every square factor of radius N contains all square factors of size n.
We set R(n) := N.

Linear recurrence There exists C such that R(n) ≤ Cn for all n.

Discrete planes [A. Haynes, H. Koivusalo, J. Walton] Linearly
recurrent discrete planes are the planes that have a badly
approximable normal vector

|(r , s)|2||rα + sβ|| ≥ C for all (r , s) 6= 0, (r , s) ∈ Z2



Strong primitivity

Theorem [Durand] Let S be a finite set of substitution and u be an
S-adic word having a strongly primitive S-adic expansion. Then,
the associated shift (Xu,T ) is minimal (that is, u is uniformly
recurrent), uniquely ergodic, and it has at most linear factor
complexity.

Remark If S is a set of substitutions and τ ∈ S is positive, the
infinite word generated by a directive sequence for which τ occurs
with bounded gaps is uniformly recurrent and has at most linear
factor complexity.



LR and S-adicity
Theorem [F. Durand]

LR implies strongly primitive S-adic

A strongly primitive S-adic subshift is not necessarily an LR
subshift

Proof
σ : a 7→ acb, b 7→ bab, c 7→ cbc

τ : a 7→ abc, b 7→ acb, c 7→ aac

We consider the S-adic expansion

v := lim
n→+∞

σ ◦ τ ◦ σ2 ◦ τ ◦ · · · ◦ σnτ(a)

The sequence v is primitive S-adic, it is not LR, it has linear
complexity

[F. Durand, “LR Subshsifts have a finite number of
non-periodic factors”]

LR is equivalent with primitive and proper S-adic



LR and S-adicity
Theorem [F. Durand]

LR implies strongly primitive S-adic

A strongly primitive S-adic subshift is not necessarily an LR
subshift

Proof
σ : a 7→ acb, b 7→ bab, c 7→ cbc
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Frequencies and invariant measures



Invariant measures

We are given a directive sequence (σn)n

M[0,n) = M0M1 . . .Mn−1

The limit cone determined by the incidence matrices of the
substitutions σn is defined as⋂

n

M[0,n)Rd
+



Invariant measures

We are given a directive sequence (σn)n

M[0,n) = M0M1 . . .Mn−1

The limit cone determined by the incidence matrices of the
substitutions σn is defined as⋂

n

M[0,n)Rd
+

It is the convex hull of the set of half lines R+f generated by the
letter frequency vectors f of infinite words in the S-adic shift X



Invariant measures
We are given a directive sequence (σn)n

M[0,n) = M0M1 . . .Mn−1

The limit cone determined by the incidence matrices of the
substitutions σn is defined as⋂

n

M[0,n)Rd
+

Theorem [Furstenberg] Let (Mn)n be a sequence of non-negative
integer matrices. Assume that there exists a strictly positive
matrix B and indices

j1 < k1 ≤ j2 < k2 ≤ · · ·
such that

B = Mj1 · · ·Mk1−1 = Mj2 · · ·Mk2−1 = · · ·
Then,⋂

n∈N
M[0,n)Rd

+ = R+f for some positive vector f ∈ Rd
+.



Invariant measures

Theorem Let X be an S-adic shift with directive sequence
τ = (τn)n where τn : A∗n+1 → A∗n and A0 = {1, . . . , d}. Denote by
(Mn)n the associated sequence of incidence matrices.

If the sequence (τn)n is everywhere growing, then X has uniform
letter frequencies if and only if if the cone C (0) is one-dimensional.

If furthermore, for each k , the limit cone

C (k) =
⋂

n→∞
M[k,n)Rd

+

is one-dimensional, then the S-adic dynamical system (X ,T ) is
uniquely ergodic.

cf. [Bezuglyi, Kwiatkowski, Medynets, Solomyak]
for Bratelli diagrams



Simultaneous approximation and cone convergence

Let f be the generalized eigenvector for an S-adic system on the
alphabet A = {1, . . . , d}, normalized by f1 + . . .+ fd = 1. Let
(e1, . . . , ed) be the canonical basis of Rd . Let (Mn)n stand for the
sequence of incidence matrices associated with its directive
sequence, and note An = M0 · · ·Mn−1.

The S-adic system X is weakly convergent toward the
non-negative half-line directed by f if

∀i ∈ {1, . . . , d}, lim
n→∞

d

(
Anei
‖Anei‖1

, f

)
= 0.

It is said to be strongly convergent if for a.e. f

∀i ∈ {1, . . . , d}, lim
n→∞

d(Anei ,Rf ) = 0.



Continued fractions



From S-adic systems to multidimensional continued
fractions

Finding an S-adic description of a minimal symbolic dynamical
system  a multidimensional continued fraction algorithm that

governs its letter frequency vector.

Conversely, we can decide to start with a multidimensional
continued fraction algorithm and associate with it an S-adic
system. We then translate a continued fraction algorithm into
S-adic terms.



From S-adic systems to multidimensional continued
fractions

Finding an S-adic description of a minimal symbolic dynamical
system  a multidimensional continued fraction algorithm that

governs its letter frequency vector.

Conversely, we can decide to start with a multidimensional
continued fraction algorithm and associate with it an S-adic
system. We then translate a continued fraction algorithm into
S-adic terms.



Our strategy

We apply a multidimensional continued fraction algorithm to
the line in R3 directed by a given vector u = (u1, u2, u3)

We then associate with the matrices produced by the
algorithm substitutions, with these substitutions having the
matrices produced by the continued fraction algorithm as
incidence matrices



Multidimensional continued fractions

If we start with two parameters (α, β), one looks for two rational
sequences (pn/qn) et (rn/qn) with the same denominator that
satisfy

lim pn/qn = α, lim rn/qn = β.



Continued fractions

Euclid’s algorithm Starting with two numbers, one subtracts
the smallest to the largest

Unimodularity

det

[
pn+1 qn+1

pn qn

]
= ±1

Rem SL(2,N) is a finitely generated free monoid. It is
generated by [

1 0
1 1

]
and

[
1 1
0 1

]
Best approximation property

Theorem A rational number p/q is a best approximation of
the real number α if every p′/q′ wth 1 ≤ q′ ≤ q, p/q 6= p′/q′

satifies
|qα− p| < |q′α− p′|

Every best approximation of α is a convergent



From SL(2,N) to SL(3,N)

SL(2,N) is a free and finitely generated monoid

SL(3,N) is not free

SL(3,N) is not finitely generated. Consider the family of
matrices  1 0 n

1 n − 1 0
1 1 n − 1


These matrices are undecomposable for n ≥ 3 [Rivat]



Multidimensional continued fractions
There is no canonical generalization of continued fractions to
higher dimensions

Several approaches are possible

best simultaneous approximations but we then loose
unimodularity, and the sequence of best approximations
heavily depends on the chosen norm [Lagarias]

Klein polyhedra and sails [Arnold]

unimodular multidimensional Euclid’s algorithms

Fibered systems e.g., Jacobi-Perron algorithm, Brun
algorithm [Brentjes, Schweiger]

sequences of nested cones approximating a direction
[Nogueira]

lattice reduction / geodesic flow (LLL),
[Lagarias],[Ferguson-Forcade], [Just],
[Grabiner-Lagarias][Smeets]



What is expected?
We are given (α1, · · · , αd) which produces a sequence of basis
(B(k)) of Zd+1 and/or a sequence of approximations

(p
(k
1 ), · · · , p(k)d , q(k))

Arithmetics A two-dimensional continued fraction algorithm is
expected to

detect integer relations for (1, α1, · · · , αd)

give algebraic characterizations of periodic expansions

converge sufficiently fast

max
i

dist(b
(k)
i , (α, 1)R)→k 0

and provide good rational approximations

Good means “with respect to Dirichlet’s theorem”: there exist
infinitely many (pi/q)1≤i≤d such that

max
i
|αi − pi/q| ≤

1

q1+1/d



Examples of multidimensional Euclid’s algorithms

Jacobi-Perron: we subtract the first one to the two other ones with
0 ≤ x1, x2 ≤ x3

(x1, x2, x3) 7→ (x2 − [
x2
x1

]x1, x3 − [
x3
x1

]x1, x1)

Brun: we subtract the second largest and we reorder with x1 ≤ x2 ≤ x3

(x1, x2, x3) 7→ (x1, x2, x3 − x2)

Poincaré: we subtract the previous one and we reorder with x1 ≤ x2 ≤ x3

(x1, x2, x3) 7→ (x1, x2 − x1, x3 − x2)

Selmer: we subtract the smallest to the largest and we reorder with
x1 ≤ x2 ≤ x2

(x1, x2, x3) 7→ (x1, x2, x3 − x1)

Fully subtractive: we subtract the smallest one to all the largest ones
and we reorder with x1 ≤ x2 ≤ x3

(x1, x2, x3) 7→ (x1, x2 − x1, x3 − x1)



Let X ⊂ Rd
+ (one usually take X = Rd

+) and let (Xi )i∈I be a
finite or countable partition of X into measurable subsets.

Let Mi be non-negative integer matrices so that MiX ⊂ Xi .

We define a d-dimensional continued fraction map over X as
the map

F : X → X F (x) = M−1i x if x ∈ Xi

We define M(x) = Mi if x ∈ Xi .

The associated continued fraction algorithm consists in
iteratively applying the map F on a vector x ∈ X .

This yields the sequence (M(F n(x)))n≥1 of matrices, called
the continued fraction expansion of x .

We then can interpret these matrices as incidence matrices of
substitutions (with a choice that is highly non-canonical).



Jacobi-Perron substitutions
Consider for instance the Jacobi-Perron algorithm. Its projective
version is defined on the unit square (0, 1)× (0, 1) by:

(α, β) 7→
(
β

α
−
⌊
β

α

⌋
,

1

α
−
⌊

1

α

⌋)
=

({
β

α

}
,

{
1

α

})
.

Its linear version is defined on the positive cone
X = {(a, b, c) ∈ R3|0 < a, b < c} by:

(a, b, c) 7→ (a1, b1, c1) = (b − bb/aca, c − bc/aca, a).

Set B = bb/aca, C = bc/ac. One has a
b
c

 =

 0 0 1
1 0 B
0 1 C

 a1
b1
c1

 .

We associate with the above matrix the substitution

σB,C : 1 7→ 2, 2 7→ 3, 3 7→ 12B3C



Applying Brun algorithm to (23, 45, 37)

Brun consists in subtracting the second largest entry to the largest

Consider a ≤ b ≤ c

Send (a, b, c) to (a, b, c − b) and reorder



Applying Brun algorithm to (23, 45, 37)

(0, 0, 0)

(23, 45, 37)

x

y

z



S-adic expansions

One considers
u = lim

n→+∞
σ1σ2 · · ·σn(0)



S-adic expansions

One considers
u = lim

n→+∞
σ1σ2 · · ·σn(0)

Convergence

Let pk be the perfix of u of length k . Do the abelianizations of the
pk “converge” to the line ?
Convergence speed ? Type of convergence ? Weak ? strong ?



S-adic expansions

One considers
u = lim

n→+∞
σ1σ2 · · ·σn(0)

Combinatorially

• Frequencies with bounded remainders and balance

∃C , ∀i ∈ A, ∃f (i) t.q. ∀N |Card{k ≤ N, uk = i} − Nf (i)| ≤ C



S-adic expansions
One considers

u = lim
n→+∞

σ1σ2 · · ·σn(0)

Arithmetically

• Weak and strong convergence of multidimensional continued
fraction algorithms
Theorem There exists δ > 0 s.t. for almost every (α, β), there
exists n0 = n0(α, β) s.t. for all n ≥ n0

|α− pn/qn| <
1

q1+δn

|β − rn/qn| <
1

q1+δn

,

where pn, qn, rn are given by Brun/Jacobi-Perron.
Brun [Ito-Fujita-Keane-Ohtsuki ’93+’96]; Jacobi-Perron
[Broise-Guivarc’h ’99]



Lyapunov exponents for S-adic systems

Let S be a finite set of unimodular substitutions

 log-integrability∫
log max(‖A1(γ)‖, ‖A1(γ)−1‖)dµ(γ) <∞.

Let (D, S , ν) with D ⊂ SN be an ergodic subshift equipped
with a probability measure ν

S is the shift acting on D
A subshift is a closed shift-invariant subset of sequences

We consider the behaviour of the matrices
An(s) = Mσ0 · · ·Mσn for a generic s = (σn) ∈ D



Lyapunov exponents for S-adic systems

Let S be a finite set of unimodular substitutions

Let (D, S , ν) with D ⊂ SN be an ergodic subshift equipped
with a probability measure ν

We consider the behaviour of the matrices
An(s) = Mσ0 · · ·Mσn for a generic s = (σn) ∈ D

The Lyapunov exponents θ1, θ2, . . . , θd of (D,S , ν) are recursively
defined by the ν-a.e. limit of

θ1 + θ2 + · · ·+ θk = lim
n→∞

1

n
log ‖ ∧k (Mσ0 · · ·Mσn−1)‖

where ∧k denotes the k-fold wedge product



Lyapunov exponents for S-adic systems

Let S be a finite set of unimodular substitutions

Let (D, S , ν) with D ⊂ SN be an ergodic subshift equipped
with a probability measure ν

We consider the behaviour of the matrices
An(s) = Mσ0 · · ·Mσn for a generic s = (σn) ∈ D

The S-adic system (D, S , ν) satisfies the Pisot condition if

θ1 > 0 > θ2 ≥ θ3 ≥ · · · ≥ θd



S-adic Pisot dynamics
Theorem [B.-Steiner-Thuswaldner]

For almost every (α, β) ∈ [0, 1]2, the S-adic system provided
by the Brun multidimensional continued fraction algorithm
applied to (α, β) is measurably conjugate to the translation by
(α, β) on the torus T2

For almost every Arnoux-Rauzy word, the associated S-adic
system has discrete spectrum

Proof Based on

“adic IFS” (Iterated Function System)

Theorem [Avila-Delecroix]

The Arnoux-Rauzy S-adic system is Pisot

Theorem [Avila-Hubert-Skripchenko]

A measure of maximal entropy for the Rauzy gasket

Finite products of Brun/Arnoux-Rauzy substitutions have
discrete spectrum [B.-Bourdon-Jolivet-Siegel]



The two-letter case [B.-Minervino-Steiner-Thuswaldner]

Let σ = (σn)n∈N be a primitive and algebraically irreducible
sequence of unimodular substitutions over A = {1, 2}

Assume that there is C > 0 such that

for each ` ∈ N, there is n ≥ 1 with

(σn, . . . , σn+`−1) = (σ0, . . . , σ`−1) recurrence

the language L(n+`)σ has bounded discrepancy with the same
bound C

Then the S-adic shift Xσ has pure discrete spectrum



Pisot adic dynamics

Substitutions produce hierarchical ordered structures (infinite
words, point sets, tilings) that display strong self-similarity
properties

Substitutions are closely related to induction (first return
maps, Rokhlin towers, renormalization etc.)

We consider substitutions that create a hierarchical structure
with a significant amount of long range order

And we go beyond algebraicity via the S-adic formalism
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