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Rotations

Recall that for rotation we have:

Theorem
Let α be irrational, and Xα be the Sturmian shift associated to the
rotation Tα. Then:

I pXα(n) = n + 1, in particular Xα has 0 entropy;

I the shift Xα is minimal (all orbits are dense);

I (Hecke (1922), Ostrowski (1922)) any clopen Y ⊂ Xα has
bounded remainder: there exists µY and CY so that

∀x ∈ Xα, ∀n ≥ 0,

∣∣∣∣∣
n∑

k=0

(χY (T n
αx)− µY )

∣∣∣∣∣ ≤ CY .

In particular, the shift Xα is uniquely ergodic.



Interval exchange transformations

An interval exchange transformation is a piecwise translation of the
interval that is a bijection from I\{αtop

1 , . . . , αtop
d−1} to

I\{αbot
1 , . . . , αbot

d−1}.
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The above interval exchage can be defined from:

I a ”permutation” π =

(
A B C D
C A D B

)
,

I a length vector λ = (λA, λB , λC , λD).
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Main motivation: rational billiards
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Coding
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As we did for rotations, we could code orbits in {A,B,C ,D}Z
(except the singular ones). We obtain a shift Xπ,λ and a factor
map p : Xπ,λ → I .

All orbits of the iet Tπ,λ has one preimage in Xπ,λ except the
singular ones that have two (i.e. the future orbits of αbot

1 , . . . , αbot
2

and the past orbits of αtop
1 , . . . , αbot

d−1).
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Connections

Σtop := {αtop
1 , . . . , αtop

d−1} (singularities of T )

Σbot := {αbot
1 , . . . , αbot

d−1} (singularities of T−1).
A connection is a triple (m, α, β) where m ≥ 0, α ∈ Σtop,
β ∈ Σbot and Tmβ = α.

I A rotation has a connection if and only if the angle is rational.

I If the length data λ is rational

dimQ

(
Q
λ1
λd

+ Q
λ2
λd

+ . . .+ Q
λd−1
λd

)
= 1

then there are d − 1 connections (and all orbits are periodic).

I If the length data λ is maximally irrational

dimQ

(
Q
λ1
λd

+ Q
λ2
λd

+ . . .+ Q
λd−1
λd

)
= d − 1

then there are no connection.
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Coding

Theorem
Let Xπ,λ be the shift associated to an interval exchange
transformation Tπ,λ on d intervals with π irreducible. Then the
following are equivalent

I pπ,λ(n) = (d − 1)n + 1,

I Tπ,λ has no connection.

In general

lim
n→∞

pπ,λ(n)

n
= (d − 1)−#connections.
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Minimality: Keane theorem

Theorem
If Tπ,λ has no connection then Xπ,λ is minimal. In other words, all
infinite orbits of Tπ,λ are dense.

Corollary

Let π be a primitive substitution. Then for almost every λ with
respect to the Lebesgue measure, the interval exchange
transformation Tπ,λ is minimal.

Corollary

In a rational billiard, excepted countably many directions the flow
is minimal.
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