Interval exchange transformations Part II: Minimality, Rauzy induction and Teichmüller flow)

Vincent Delecroix

November 2015, Salta

Rotations

Recall that for rotation we have:

Theorem

Let α be irrational, and X_{α} be the Sturmian shift associated to the rotation T_{α} . Then:

- $p_{X_{\alpha}}(n) = n + 1$, in particular X_{α} has **0** entropy;
- the shift X_{α} is **minimal** (all orbits are dense);
- Hecke (1922), Ostrowski (1922)) any clopen Y ⊂ X_α has bounded remainder: there exists µ_Y and C_Y so that

$$\forall x \in X_{\alpha}, \forall n \geq 0, \quad \left| \sum_{k=0}^{n} (\chi_{Y}(T_{\alpha}^{n}x) - \mu_{Y}) \right| \leq C_{Y}.$$

In particular, the shift X_{α} is uniquely ergodic.

Interval exchange transformations

An interval exchange transformation is a piecwise translation of the interval that is a bijection from $I \setminus \{\alpha_1^{top}, \ldots, \alpha_{d-1}^{top}\}$ to $I \setminus \{\alpha_1^{bot}, \ldots, \alpha_{d-1}^{bot}\}$.

Interval exchange transformations

An interval exchange transformation is a piecwise translation of the interval that is a bijection from $I \setminus \{\alpha_1^{top}, \ldots, \alpha_{d-1}^{top}\}$ to $I \setminus \{\alpha_1^{bot}, \ldots, \alpha_{d-1}^{bot}\}$.

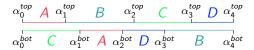
The above interval exchage can be defined from:

• a "permutation"
$$\pi = \begin{pmatrix} A B C D \\ C A D B \end{pmatrix}$$
,

• a length vector
$$\lambda = (\lambda_A, \lambda_B, \lambda_C, \lambda_D)$$
.

Main motivation: rational billiards

(... Sage ...)



As we did for rotations, we could code orbits in $\{A, B, C, D\}^{\mathbb{Z}}$ (except the singular ones). We obtain a shift $X_{\pi,\lambda}$ and a factor map $p: X_{\pi,\lambda} \to I$.

$$\alpha_{0}^{top} A \alpha_{1}^{top} B \alpha_{2}^{top} C \alpha_{3}^{top} D \alpha_{4}^{top}$$

$$\alpha_{0}^{bot} C \alpha_{1}^{bot} A \alpha_{2}^{bot} D \alpha_{3}^{bot} B \alpha_{4}^{bot}$$

As we did for rotations, we could code orbits in $\{A, B, C, D\}^{\mathbb{Z}}$ (except the singular ones). We obtain a shift $X_{\pi,\lambda}$ and a factor map $p: X_{\pi,\lambda} \to I$. All orbits of the iet $T_{\pi,\lambda}$ has one preimage in $X_{\pi,\lambda}$ except the singular ones that have two (i.e. the future orbits of $\alpha_1^{bot}, \ldots, \alpha_2^{bot}$ and the past orbits of $\alpha_1^{top}, \ldots, \alpha_{d-1}^{bot}$).

$$\begin{split} \Sigma^{top} &:= \{\alpha_1^{top}, \dots, \alpha_{d-1}^{top}\} \text{ (singularities of } T \text{)} \\ \Sigma^{bot} &:= \{\alpha_1^{bot}, \dots, \alpha_{d-1}^{bot}\} \text{ (singularities of } T^{-1} \text{)}. \\ \text{A connection is a triple } (m, \alpha, \beta) \text{ where } m \geq 0, \ \alpha \in \Sigma^{top}, \\ \beta \in \Sigma^{bot} \text{ and } T^m \beta = \alpha. \end{split}$$

$$\begin{split} \Sigma^{top} &:= \{\alpha_1^{top}, \dots, \alpha_{d-1}^{top}\} \text{ (singularities of } T \text{)} \\ \Sigma^{bot} &:= \{\alpha_1^{bot}, \dots, \alpha_{d-1}^{bot}\} \text{ (singularities of } T^{-1}\text{)}. \\ \text{A connection is a triple } (m, \alpha, \beta) \text{ where } m \geq 0, \ \alpha \in \Sigma^{top}, \\ \beta \in \Sigma^{bot} \text{ and } T^m \beta = \alpha. \end{split}$$

• A rotation has a connection if and only if the angle is rational.

$$\begin{split} \Sigma^{top} &:= \{\alpha_1^{top}, \dots, \alpha_{d-1}^{top}\} \text{ (singularities of } T \text{)} \\ \Sigma^{bot} &:= \{\alpha_1^{bot}, \dots, \alpha_{d-1}^{bot}\} \text{ (singularities of } T^{-1}\text{)}. \\ \text{A connection is a triple } (m, \alpha, \beta) \text{ where } m \geq 0, \ \alpha \in \Sigma^{top}, \\ \beta \in \Sigma^{bot} \text{ and } T^m \beta = \alpha. \end{split}$$

- A rotation has a connection if and only if the angle is rational.
- If the length data λ is rational

$$\dim_{\mathbb{Q}}\left(\mathbb{Q}\frac{\lambda_{1}}{\lambda_{d}} + \mathbb{Q}\frac{\lambda_{2}}{\lambda_{d}} + \ldots + \mathbb{Q}\frac{\lambda_{d-1}}{\lambda_{d}}\right) = 1$$

then there are d - 1 connections (and all orbits are periodic).

$$\begin{split} \Sigma^{top} &:= \{\alpha_1^{top}, \dots, \alpha_{d-1}^{top}\} \text{ (singularities of } \mathcal{T} \text{)} \\ \Sigma^{bot} &:= \{\alpha_1^{bot}, \dots, \alpha_{d-1}^{bot}\} \text{ (singularities of } \mathcal{T}^{-1} \text{)}. \\ \text{A connection is a triple } (m, \alpha, \beta) \text{ where } m \geq 0, \ \alpha \in \Sigma^{top}, \\ \beta \in \Sigma^{bot} \text{ and } \mathcal{T}^m \beta = \alpha. \end{split}$$

A rotation has a connection if and only if the angle is rational.

• If the length data λ is rational

$$\mathsf{dim}_{\mathbb{Q}}\left(\mathbb{Q}\frac{\lambda_1}{\lambda_d} + \mathbb{Q}\frac{\lambda_2}{\lambda_d} + \ldots + \mathbb{Q}\frac{\lambda_{d-1}}{\lambda_d}\right) = 1$$

then there are d - 1 connections (and all orbits are periodic).

• If the length data λ is maximally irrational

$$\dim_{\mathbb{Q}}\left(\mathbb{Q}\frac{\lambda_{1}}{\lambda_{d}} + \mathbb{Q}\frac{\lambda_{2}}{\lambda_{d}} + \ldots + \mathbb{Q}\frac{\lambda_{d-1}}{\lambda_{d}}\right) = d - 1$$

then there are no connection.

Theorem

Let $X_{\pi,\lambda}$ be the shift associated to an interval exchange transformation $T_{\pi,\lambda}$ on d intervals with π irreducible. Then the following are equivalent

▶
$$p_{\pi,\lambda}(n) = (d-1)n + 1$$
,

• $T_{\pi,\lambda}$ has no connection.

Theorem

Let $X_{\pi,\lambda}$ be the shift associated to an interval exchange transformation $T_{\pi,\lambda}$ on d intervals with π irreducible. Then the following are equivalent

▶
$$p_{\pi,\lambda}(n) = (d-1)n + 1$$
,

• $T_{\pi,\lambda}$ has no connection.

In general

$$\lim_{n\to\infty}\frac{p_{\pi,\lambda}(n)}{n}=(d-1)-\#connections.$$

Minimality: Keane theorem

Theorem

If $T_{\pi,\lambda}$ has no connection then $X_{\pi,\lambda}$ is minimal. In other words, all infinite orbits of $T_{\pi,\lambda}$ are dense.

Minimality: Keane theorem

Theorem

If $T_{\pi,\lambda}$ has no connection then $X_{\pi,\lambda}$ is minimal. In other words, all infinite orbits of $T_{\pi,\lambda}$ are dense.

Corollary

Let π be a primitive substitution. Then for almost every λ with respect to the Lebesgue measure, the interval exchange transformation $T_{\pi,\lambda}$ is minimal.

Minimality: Keane theorem

Theorem

If $T_{\pi,\lambda}$ has no connection then $X_{\pi,\lambda}$ is minimal. In other words, all infinite orbits of $T_{\pi,\lambda}$ are dense.

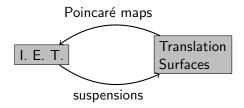
Corollary

Let π be a primitive substitution. Then for almost every λ with respect to the Lebesgue measure, the interval exchange transformation $T_{\pi,\lambda}$ is minimal.

Corollary

In a rational billiard, excepted countably many directions the flow is minimal.

Back and forth between iet and translation surfaces



Back and forth between iet and translation surfaces

