III. Measuring Interactions Within a Dynamical System

Karl Petersen and Benjamin Wilson

University of North Carolina at Chapel Hill

Cantor Salta November 4, 2015

Contrasting brain actions in higher vertebrates:

- 1. Specificity and modularity (functional segregation)
- 2. Global functions and mass actions (integration in perception and behavior)

Neither specificity nor coordination alone adequately accounts for brain activity.

- Neither specificity nor coordination alone adequately accounts for brain activity.
- ► So they propose a general measure—intricacy— that encompasses these fundamental aspects of brain organization.

- Neither specificity nor coordination alone adequately accounts for brain activity.
- ► So they propose a general measure—*intricacy* that encompasses these fundamental aspects of brain organization.
- High values are associated with non-trivial organization of the network. This is the case when segregation coexists with integration.

- Neither specificity nor coordination alone adequately accounts for brain activity.
- ► So they propose a general measure—intricacy— that encompasses these fundamental aspects of brain organization.
- High values are associated with non-trivial organization of the network. This is the case when segregation coexists with integration.
- Low values are associated with systems that are either completely independent (segregated, disordered) or completely dependent (integrated, ordered).

ntricacy is an average of the interaction, measured by mutual nformation, between sets of sites and their complements.	

Mutual Information

Entropy of a random variable X taking values in a discrete set E:

$$H(X) = -\sum_{x \in F} Pr\{X = x\} \log Pr\{X = x\}.$$

Mutual information between random variables X and Y over the same probability space:

$$MI(X,Y) = H(X) + H(Y) - H(X,Y).$$

- $ightharpoonup MI(X,Y) \geqslant 0$
- ▶ $MI(X, Y) = 0 \Leftrightarrow X$ and Y are independent

- $n^* = \{0, 1, \dots, n-1\}$
- ▶ $X = \{X_i : i \in n^*\}$ a family of random variables representing an isolated neural system with n elementary components (neuronal groups)
 - ▶ For $S \subset n^*$, $X_S = \{X_i : i \in S\}$
 - $S^{c} = n^{*} \setminus S.$

Intricacy (or Neural Complexity), C_N

Average of mutual information over subfamilies of a family of random variables

$$C_N(X) = \frac{1}{n+1} \sum_{S \subset \mathbb{R}^*} \frac{1}{\binom{n}{|S|}} MI(X_S, X_{S^c}).$$

Intricacies in probability (J. Buzzi, L. Zambotti, 2009)

- Give a general probabilisitic representation of neural complexity.
- Neural complexity belongs to a natural class of functionals: weighted averages of mutual information whose weights satisfy certain properties.

Intricacies in probability (J. Buzzi, L. Zambotti, 2009)

- Give a general probabilisitic representation of neural complexity.
- Neural complexity belongs to a natural class of functionals: weighted averages of mutual information whose weights satisfy certain properties.

System of coefficients

A system of coefficients, c_S^n , is a family of numbers satisfying for all $n \in \mathbb{N}$ and $S \subset n^*$

- 1. $c_5^n \ge 0$;
- 2. $\sum_{S \subset n^*} c_S^n = 1$;
- 3. $c_{S^c}^n = c_S^n$.

Mutual information functional

- ▶ For a fixed $n \in \mathbb{N}$ let $X = \{X_i : i \in n^*\}$ be a collection of random variables all taking values in the same finite set.
- ▶ Given a system of coefficients, c_S^n , the corresponding mutual information functional, $\mathfrak{I}^c(X)$ is defined by

$$\mathfrak{I}^{c}(X) = \sum_{S \subset \mathbf{r}^{*}} c_{S}^{n} MI(X_{S}, X_{S^{c}}).$$

Mutual information functional

- ▶ For a fixed $n \in \mathbb{N}$ let $X = \{X_i : i \in n^*\}$ be a collection of random variables all taking values in the same finite set.
- ▶ Given a system of coefficients, c_S^n , the corresponding mutual information functional, $\mathfrak{I}^c(X)$ is defined by

$$\mathfrak{I}^{c}(X) = \sum_{S \subset n^{*}} c_{S}^{n} MI(X_{S}, X_{S^{c}}).$$

Intricacies: Probabilistic definition

An intricacy is a mutual information functional satisfying:

- 1. Exchangeability: invariance by permutations of n;
- 2. Weak additivity: $\mathfrak{I}^{c}(X, Y) = \mathfrak{I}^{c}(X) + \mathfrak{I}^{c}(Y)$ for any two independent systems $X = \{X_{i} : i \in n^{*}\}$ and $Y = \{Y_{j} : j \in m^{*}\}$.

Theorem (Buzzi, Zambotti)

Let c_S^n be a system of coefficients and \mathfrak{I}^c the associated mutual information functional. \mathfrak{I}^c is an intricacy if and only if there exists a symmetric probability measure λ_c on [0,1] such that

$$c_S^n = \int_{[0,1]} x^{|S|} (1-x)^{n-|S|} \lambda_c(dx)$$

Theorem (Buzzi, Zambotti)

Let c_S^n be a system of coefficients and \mathfrak{I}^c the associated mutual information functional. \mathfrak{I}^c is an intricacy if and only if there exists a symmetric probability measure λ_c on [0,1] such that

$$c_{\mathsf{S}}^{n} = \int_{[0,1]} x^{|\mathsf{S}|} (1-x)^{n-|\mathsf{S}|} \lambda_{\mathsf{c}}(dx)$$

Examples

- 1. $c_S^n = \frac{1}{(n+1)} \frac{1}{\binom{n}{|S|}}$ (Edelman-Sporns-Tononi);
- 2. For 0 ,

$$c_S^n = \frac{1}{2}(p^{|S|}(1-p)^{n-|S|} + (1-p)^{|S|}p^{n-|S|})$$
 (p-symmetric);

3. For p = 1/2, $c_S^n = 2^{-n}$ (uniform).

Definitions in Dynamics

Topological dynamical system, (X, T)

- ► X a compact Hausdorff (often metric) space;
- ▶ $T: X \rightarrow X$ a homeomorphism.

Definitions in Dynamics

Topological dynamical system, (X, T)

- X a compact Hausdorff (often metric) space;
- ▶ $T: X \rightarrow X$ a homeomorphism.

For an open cover $\mathcal U$ of X, recall that $N(\mathcal U)$ is the minimum cardinality of any subcover of $\mathcal U$.

Definition (Adler, Konheim, McAndrew, 1965)

The topological entropy of (X, T) is defined by

$$h_{\mathsf{top}}(X,\,T) = \sup_{\mathcal{U}} \lim_{n \to \infty} \frac{1}{n} \log N(\mathcal{U} \vee T^{-1}\mathcal{U} \vee \cdots \vee T^{-n+1}\mathcal{U}).$$

Measure of randomness or disorder of a system.

Let (X, T) be a topological dynamical system and \mathcal{U} an open cover of X. Given $n \in \mathbb{N}$ and a subset $S \subset n^*$ define

$$\mathfrak{U}_{\mathcal{S}} = \bigvee_{i \in \mathcal{S}} \mathcal{T}^{-i} \mathfrak{U}.$$

Let (X, T) be a topological dynamical system and \mathcal{U} an open cover of X. Given $n \in \mathbb{N}$ and a subset $S \subset n^*$ define

$$U_S = \bigvee_{i \in S} T^{-i} U.$$

Definition (P-W)

Let c_S^n be a system of coefficients. Define the *topological intricacy* of (X, T) with respect to the open cover \mathcal{U} to be

$$\operatorname{Int}(X, \mathcal{U}, T) := \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset \mathbb{T}^*} c_S^n \log \left(\frac{N(\mathcal{U}_S) N(\mathcal{U}_{S^c})}{N(\mathcal{U}_{n^*})} \right).$$

Definition (P-W)

The topological average sample complexity of T with respect to the open cover ${\mathfrak U}$ is defined to be

$$\operatorname{Asc}(X, \mathcal{U}, T) := \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \log N(\mathcal{U}_S).$$

Definition (P-W)

The topological average sample complexity of T with respect to the open cover ${\mathfrak U}$ is defined to be

$$\operatorname{Asc}(X, \mathcal{U}, T) := \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset \mathbb{R}^*} c_S^n \log N(\mathcal{U}_S).$$

So
$$Int(X, \mathcal{U}, T) = 2 Asc(X, \mathcal{U}, T) - h_{top}(X, \mathcal{U}, T).$$

The limits in the definitions of $Int(X, \mathcal{U}, T)$ and $Asc(X, \mathcal{U}, T)$ exist.

Proof based on subadditivity of the sequence

$$b_n := \sum_{S \subset n^*} c_S^n \log N(\mathcal{U}_S)$$

and Fekete's Subadditive Lemma: For every subadditive sequence a_n , the limit $\lim_{n\to\infty} a_n/n$ exists and is equal to $\inf_n a_n/n$.

The limits in the definitions of $Int(X, \mathcal{U}, T)$ and $Asc(X, \mathcal{U}, T)$ exist.

Proof based on subadditivity of the sequence

$$b_n := \sum_{S \subset n^*} c_S^n \log N(\mathcal{U}_S)$$

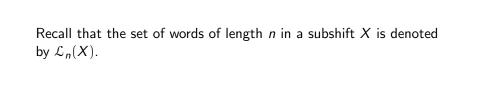
and Fekete's Subadditive Lemma: For every subadditive sequence a_n , the limit $\lim_{n\to\infty} a_n/n$ exists and is equal to $\inf_n a_n/n$.

Proposition

For each open cover \mathcal{U} ,

$$\mathsf{Asc}(X, \mathcal{U}, \mathcal{T}) \leqslant h_{\mathsf{top}}(X, \mathcal{U}, \mathcal{T}) \leqslant h_{\mathsf{top}}(X, \mathcal{T}), \text{ and hence } \\ \mathsf{Int}(X, \mathcal{U}, \mathcal{T}) \leqslant h_{\mathsf{top}}(X, \mathcal{U}, \mathcal{T}) \leqslant h_{\mathsf{top}}(X, \mathcal{T}).$$

In particular, a dynamical system with zero (or relatively low) topological entropy (integrated, ordered) has zero (or relatively low) topological intricacy.



Recall that the set of words of length n in a subshift X is denoted by $\mathcal{L}_n(X)$.

For a subset $S \subset n^*$, $S = \{s_0, s_1, \ldots, s_{|S|-1}\}$, denote the set of words we can see at the places in S for all words in $\mathcal{L}_n(X)$ by $\mathcal{L}_S(X)$:

$$\mathcal{L}_{S}(X) = \{w_{s_0}w_{s_1}\dots w_{s_{|S|-1}}: w = w_0w_1\dots w_{n-1} \in \mathcal{L}_{n}(X)\}.$$

Notice $\mathcal{L}_{n^*}(X) = \mathcal{L}_n(X)$.

Intricacy of a subshift, X

$$\operatorname{Int}(X, \mathcal{U}_0, \sigma) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \log \left(\frac{|\mathcal{L}_S(X)||\mathcal{L}_{S^c}(X)|}{|\mathcal{L}_{n^*}(X)|} \right)$$

Intricacy of a subshift, X

$$\operatorname{Int}(X, \mathcal{U}_0, \sigma) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \log \left(\frac{|\mathcal{L}_S(X)| |\mathcal{L}_{S^c}(X)|}{|\mathcal{L}_{n^*}(X)|} \right)$$

Example (Computing $|\mathcal{L}_S(X)|$ for the golden mean sft) Let n = 3, $n^* = \{0, 1, 2\}$.

Example (Computing $|\mathcal{L}_S(X)|$ for the golden mean sft)

S	Sc	$ \mathcal{L}_{S}(X) $	$ \mathcal{L}_{\mathcal{S}^c}(X) $
Ø	{0, 1, 2}	1	5
{0}	$\{1, 2\}$	2	3
{1}	$\{0, 2\}$	2	4
{2}	$\{0, 1\}$	2	3
$\{0, 1\}$	{2}	3	2
$\{0, 2\}$	{1}	4	2
$\{1, 2\}$	{0}	3	2
{0, 1, 2}	Ø	5	1

Example (Computing $|\mathcal{L}_S(X)|$ for the golden mean sft)

S	S ^c	$ \mathcal{L}_{S}(X) $	$ \mathcal{L}_{S^c}(X) $
Ø	{0, 1, 2}	1	5
{0}	$\{1, 2\}$	2	3
{1}	$\{0, 2\}$	2	4
{2}	$\{0, 1\}$	2	3
$\{0, 1\}$	{2}	3	2
$\{0, 2\}$	{1}	4	2
$\{1, 2\}$	{0}	3	2
{0, 1, 2}	Ø	5	1

$$\frac{1}{3 \cdot 2^3} \sum_{S \subset 3^*} \log \left(\frac{|\mathcal{L}_S(X)||\mathcal{L}_{S^c}(X)|}{|\mathcal{L}_{n^*}(X)|} \right) = \frac{1}{24} \log \left(\frac{6^4 \cdot 8^2}{5^6} \right) \approx 0.070$$

Let X be a shift of finite type with adjacency matrix M such that $M^2 > 0$. Let $c_s^n = 2^{-n}$ for all S. Then

$$\mathsf{Asc}(X, \mathfrak{U}_0, \sigma) = \frac{1}{4} \sum_{k=1}^{\infty} \frac{\log |\mathcal{L}_{k^*}(X)|}{2^k}.$$

Let X be a shift of finite type with adjacency matrix M such that $M^2 > 0$. Let $c_S^n = 2^{-n}$ for all S. Then

$$\operatorname{Asc}(X, \mathfrak{U}_0, \sigma) = \frac{1}{4} \sum_{k=1}^{\infty} \frac{\log |\mathcal{L}_{k^*}(X)|}{2^k}.$$

Asc is sensitive to word counts of all lengths, so is a finer measurement than h_{top} , which just gives the asymptotic exponential growth rate.

Let X be a shift of finite type with adjacency matrix M such that $M^2 > 0$. Let $c_S^n = 2^{-n}$ for all S. Then

$$\operatorname{Asc}(X, \mathcal{U}_0, \sigma) = \frac{1}{4} \sum_{k=1}^{\infty} \frac{\log |\mathcal{L}_{k^*}(X)|}{2^k}.$$

Asc is sensitive to word counts of all lengths, so is a finer measurement than h_{top} , which just gives the asymptotic exponential growth rate.

Proof idea: Most subsets $S \subset n^*$ are also subsets of $(n-1)^*$.

Let X be a shift of finite type with adjacency matrix M such that $M^2 > 0$. Let $c_S^n = 2^{-n}$ for all S. Then

$$\operatorname{Asc}(X, \mathcal{U}_0, \sigma) = \frac{1}{4} \sum_{k=1}^{\infty} \frac{\log |\mathcal{L}_{k^*}(X)|}{2^k}.$$

Asc is sensitive to word counts of all lengths, so is a finer measurement than $h_{\rm top}$, which just gives the asymptotic exponential growth rate.

Proof idea: Most subsets $S \subset n^*$ are also subsets of $(n-1)^*$.

Corollary

For the full r-shift with $c_s^n = 2^{-n}$ for all S,

$$\operatorname{\mathsf{Asc}}(\Sigma_r, \mathcal{U}_0, \sigma) = \frac{\log r}{2}$$
 and $\operatorname{\mathsf{Int}}(\Sigma_r, \mathcal{U}_0, \sigma) = 0.$

	Adjacency Graph	Entropy	Asc	Int
Disordered		0.693	0.347	0
	0 1	0.481	0.286	0.090
Ordered	0	0	0	0

Let (X, T) be a topological dynamical system and fix the system of coefficients to be $c_5^n = 2^{-n}$. Then

$$\sup_{\mathcal{I}} \mathsf{Asc}(X, \mathcal{U}, T) = h_{\mathsf{top}}(X, T).$$

Let (X, T) be a topological dynamical system and fix the system of coefficients to be $c_5^n = 2^{-n}$. Then

$$\sup_{\mathcal{U}} \operatorname{Asc}(X, \mathcal{U}, T) = h_{\operatorname{top}}(X, T).$$

▶ The proof depends on the structure of average subsets of $n^* = \{0, 1, ..., n-1\}.$

Let (X, T) be a topological dynamical system and fix the system of coefficients to be $c_S^n = 2^{-n}$. Then

$$\sup_{\mathcal{U}} \mathsf{Asc}(X,\mathcal{U},T) = h_{\mathsf{top}}(X,T).$$

- ▶ The proof depends on the structure of average subsets of $n^* = \{0, 1, ..., n-1\}.$
- ▶ Most $S \subset n^*$ have size about n/2, so are not too sparse.

Let (X, T) be a topological dynamical system and fix the system of coefficients to be $c_S^n = 2^{-n}$. Then

$$\sup_{\mathcal{U}} \mathsf{Asc}(X,\mathcal{U},T) = h_{\mathsf{top}}(X,T).$$

- ▶ The proof depends on the structure of average subsets of $n^* = \{0, 1, ..., n-1\}.$
- ▶ Most $S \subset n^*$ have size about n/2, so are not too sparse.
- In ordinary topological entropy of a subshift, using the time-0 partition (or open cover) α , when we replace α by $\alpha_{k^*} = \alpha_0^{k-1}$ in counting the number of cells or calculating the entropy of the refined partition, instead of α_{n^*} , we are looking at $\alpha_{(n+k)^*}$, and when k is fixed, as n grows the result is the same.

Let (X, T) be a topological dynamical system and fix the system of coefficients to be $c_s^n = 2^{-n}$. Then

$$\sup_{\mathcal{U}} \mathsf{Asc}(X,\mathcal{U},\mathcal{T}) = h_{\mathsf{top}}(X,\mathcal{T}).$$

- ► The proof depends on the structure of average subsets of $n^* = \{0, 1, ..., n-1\}$.
- ▶ Most $S \subset n^*$ have size about n/2, so are not too sparse.
- In ordinary topological entropy of a subshift, using the time-0 partition (or open cover) α , when we replace α by $\alpha_{k^*} = \alpha_0^{k-1}$ in counting the number of cells or calculating the entropy of the refined partition, instead of α_{n^*} , we are looking at $\alpha_{(n+k)^*}$, and when k is fixed, as n grows the result is the same.
- ▶ When we code by k-blocks, $S \subset n^*$ is replaced by $S + k^*$, and the effect on α_{S+k^*} as compared to α_S is similar, since it acts similarly on each of the long subintervals comprising S.

► Fix a k for coding by k-blocks (or looking at $N((\mathcal{U}_k)_S)$ or $H((\alpha_k)_S)$).

- ▶ Fix a k for coding by k-blocks (or looking at $N((\mathcal{U}_k)_S)$ or $H((\alpha_k)_S)$).
- ▶ Cut n^* into consecutive blocks of length k/2.

- ▶ Fix a k for coding by k-blocks (or looking at $N((\mathcal{U}_k)_S)$ or $H((\alpha_k)_S)$).
- ▶ Cut n^* into consecutive blocks of length k/2.
- ▶ When $s \in S$ is in one of these intervals of length k/2, then $s + k^*$ covers the next interval of length k/2.

- ▶ Fix a k for coding by k-blocks (or looking at $N((\mathcal{U}_k)_S)$ or $H((\alpha_k)_S)$).
- ▶ Cut n^* into consecutive blocks of length k/2.
- ▶ When $s \in S$ is in one of these intervals of length k/2, then $s + k^*$ covers the next interval of length k/2.
- So if S hits many of the intervals of length k/2, then $S + k^*$ starts to look like a union of long intervals, say each with $|E_i| > k$.

- ► Fix a k for coding by k-blocks (or looking at $N((\mathcal{U}_k)_S)$ or $H((\alpha_k)_S)$).
- ▶ Cut n^* into consecutive blocks of length k/2.
- ▶ When $s \in S$ is in one of these intervals of length k/2, then $s + k^*$ covers the next interval of length k/2.
- ▶ So if *S* hits many of the intervals of length k/2, then $S + k^*$ starts to look like a union of long intervals, say each with $|E_i| > k$.
- ▶ By shaving a little off each of these relatively long intervals, we can assume that also the gaps have length at least k.

- ► Fix a k for coding by k-blocks (or looking at $N((\mathcal{U}_k)_S)$ or $H((\alpha_k)_S)$).
- ▶ Cut n^* into consecutive blocks of length k/2.
- ▶ When $s \in S$ is in one of these intervals of length k/2, then $s + k^*$ covers the next interval of length k/2.
- ▶ So if *S* hits many of the intervals of length k/2, then $S + k^*$ starts to look like a union of long intervals, say each with $|E_i| > k$.
- ▶ By shaving a little off each of these relatively long intervals, we can assume that also the gaps have length at least k.

- ▶ Fix a k for coding by k-blocks (or looking at $N((\mathcal{U}_k)_S)$ or $H((\alpha_k)_S)$).
- ▶ Cut n^* into consecutive blocks of length k/2.
- ▶ When $s \in S$ is in one of these intervals of length k/2, then $s + k^*$ covers the next interval of length k/2.
- ▶ So if *S* hits many of the intervals of length k/2, then $S + k^*$ starts to look like a union of long intervals, say each with $|E_i| > k$.
- ▶ By shaving a little off each of these relatively long intervals, we can assume that also the gaps have length at least *k*.

- ▶ Fix a k for coding by k-blocks (or looking at $N((\mathcal{U}_k)_S)$ or $H((\alpha_k)_S)$).
- ▶ Cut n^* into consecutive blocks of length k/2.
- ▶ When $s \in S$ is in one of these intervals of length k/2, then $s + k^*$ covers the next interval of length k/2.
- ▶ So if S hits many of the intervals of length k/2, then $S + k^*$ starts to look like a union of long intervals, say each with $|E_i| > k$.
- ▶ By shaving a little off each of these relatively long intervals, we can assume that also the gaps have length at least *k*.

- ▶ Fix a k for coding by k-blocks (or looking at $N((\mathcal{U}_k)_S)$ or $H((\alpha_k)_S)$).
- ▶ Cut n^* into consecutive blocks of length k/2.
- ▶ When $s \in S$ is in one of these intervals of length k/2, then $s + k^*$ covers the next interval of length k/2.
- ▶ So if S hits many of the intervals of length k/2, then $S + k^*$ starts to look like a union of long intervals, say each with $|E_i| > k$.
- ▶ By shaving a little off each of these relatively long intervals, we can assume that also the gaps have length at least *k*.

▶ Given $\epsilon > 0$, we may assume k is large enough that for every interval $I \subset \mathbb{N}$ with $|I| \ge k/2$,

$$0 \leqslant \frac{\log N(I)}{\operatorname{card}(I)} - h_{\operatorname{top}}(X, \sigma) < \epsilon.$$

▶ Given $\epsilon > 0$, we may assume k is large enough that for every interval $I \subset \mathbb{N}$ with $|I| \geqslant k/2$,

$$0 \leqslant \frac{\log N(I)}{\operatorname{card}(I)} - h_{\operatorname{top}}(X, \sigma) < \epsilon.$$

▶ We let $\mathfrak B$ denote the set of $S \subset n^*$ which miss at least $2n\epsilon/k$ of the intervals of length k/2

▶ Given $\epsilon > 0$, we may assume k is large enough that for every interval $I \subset \mathbb{N}$ with $|I| \geqslant k/2$,

$$0 \leqslant \frac{\log N(I)}{\operatorname{card}(I)} - h_{\operatorname{top}}(X, \sigma) < \epsilon.$$

- ▶ We let \mathfrak{B} denote the set of $S \subset n^*$ which miss at least $2n\epsilon/k$ of the intervals of length k/2
- ▶ and show that $\lim_{n\to\infty} \frac{\operatorname{card}(\mathfrak{B})}{2^n} = 0$.

▶ Given $\epsilon > 0$, we may assume k is large enough that for every interval $I \subset \mathbb{N}$ with $|I| \geqslant k/2$,

$$0 \leqslant \frac{\log N(I)}{\operatorname{card}(I)} - h_{\operatorname{top}}(X, \sigma) < \epsilon.$$

- We let \mathfrak{B} denote the set of $S \subset n^*$ which miss at least $2n\epsilon/k$ of the intervals of length k/2
- ▶ and show that $\lim_{n\to\infty} \frac{\operatorname{card}(\mathfrak{B})}{2^n} = 0$.
- ▶ If $S \notin \mathfrak{B}$, then S hits many of the intervals of length k/2,

▶ Given $\epsilon > 0$, we may assume k is large enough that for every interval $I \subset \mathbb{N}$ with $|I| \ge k/2$,

$$0 \leqslant \frac{\log N(I)}{\operatorname{card}(I)} - h_{\operatorname{top}}(X, \sigma) < \epsilon.$$

- ▶ We let \mathfrak{B} denote the set of $S \subset n^*$ which miss at least $2n\epsilon/k$ of the intervals of length k/2
- ▶ and show that $\lim_{n\to\infty} \frac{\operatorname{card}(\mathfrak{B})}{2^n} = 0$.
- ▶ If $S \notin \mathfrak{B}$, then S hits many of the intervals of length k/2,
- ▶ and hence $S + k^*$ is the union of intervals of length at least k, and we can arrange that the gaps are also long enough to satisfy the above estimate comparing to $h_{top}(X, \sigma)$.

Measure-theoretic situation

Measure-theoretic dynamical system (X, \mathcal{B}, μ, T)

- X is a measure space
- $ightharpoonup \mathbb{B}$ is a σ -algebra of measurable subsets of X
- μ is a probability measure on X, i.e., $\mu(X) = 1$
- ▶ $T: X \to X$ is a measure-preserving transformation on X, i.e., T is a one-to-one onto map such that $\mu(T^{-1}E) = \mu(E)$ for all $E \in \mathcal{B}$

Measure-theoretic situation

Measure-theoretic dynamical system (X, \mathcal{B}, μ, T)

- X is a measure space
- $ightharpoonup \mathbb{B}$ is a σ -algebra of measurable subsets of X
- μ is a probability measure on X, i.e., $\mu(X) = 1$
- ▶ $T: X \to X$ is a measure-preserving transformation on X, i.e., T is a one-to-one onto map such that $\mu(T^{-1}E) = \mu(E)$ for all $E \in \mathcal{B}$

Entropy of a partition

The entropy of a finite measurable partition $\alpha = \{A_1, \ldots, A_n\}$ of X is defined by

$$H_{\mu}(\alpha) = -\sum_{i=1}^{n} \mu(A_i) \log \mu(A_i).$$

Definition

The entropy of X and T with respect to μ and a partition α is

$$h_{\mu}(X, \alpha, T) = \lim_{n \to \infty} \frac{1}{n} H_{\mu}(\alpha \vee T^{-1}\alpha \vee \cdots \vee T^{-n+1}\alpha).$$

The entropy of the transformation T is defined to be

$$h_{\mu}(X, T) = \sup_{\alpha} h_{\mu}(X, \alpha, T).$$

For a partition α of X and a subset $S \subset n^*$ define

$$\alpha_S = \bigvee_{i \in S} T^{-i} \alpha.$$

For a partition α of X and a subset $S \subset n^*$ define

$$\alpha_S = \bigvee_{i \in S} T^{-i} \alpha.$$

Definition (P-W)

Let (X, \mathcal{B}, μ, T) be a measure-preserving system, $\alpha = \{A_1, \dots, A_n\}$ a finite measurable partition of X, and c_S^n a system of coefficients. The measure-theoretic intricacy of T with respect to the partition α is

$$\operatorname{Int}_{\mu}(X, \alpha, T) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \left[H_{\mu}(\alpha_S) + H_{\mu}(\alpha_{S^c}) - H_{\mu}(\alpha_{n^*}) \right].$$

For a partition α of X and a subset $S \subset n^*$ define

$$\alpha_S = \bigvee_{i \in S} T^{-i} \alpha.$$

Definition (P-W)

Let (X, \mathcal{B}, μ, T) be a measure-preserving system, $\alpha = \{A_1, \ldots, A_n\}$ a finite measurable partition of X, and c_S^n a system of coefficients. The measure-theoretic intricacy of T with respect to the partition α is

$$\operatorname{Int}_{\mu}(X,\alpha,T) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \left[H_{\mu}(\alpha_S) + H_{\mu}(\alpha_{S^c}) - H_{\mu}(\alpha_{n^*}) \right].$$

The measure-theoretic average sample complexity of T with respect to the partition α is

$$\operatorname{Asc}_{\mu}(X, \alpha, T) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n H_{\mu}(\alpha_S).$$

The limits in the definitions of measure-theoretic intricacy and measure-theoretic average sample complexity exist.

The limits in the definitions of measure-theoretic intricacy and measure-theoretic average sample complexity exist.

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and fix the system of coefficients $c_s^n = 2^{-n}$. Then

$$\sup_{\alpha} \operatorname{Asc}_{\mu}(X, \alpha, T) = h_{\mu}(X, T).$$

The limits in the definitions of measure-theoretic intricacy and measure-theoretic average sample complexity exist.

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and fix the system of coefficients $c_S^n = 2^{-n}$. Then

$$\sup_{\alpha} \mathsf{Asc}_{\mu}(X, \alpha, T) = h_{\mu}(X, T).$$

The proofs are similar to those for the corresponding theorems in topological setting.

The limits in the definitions of measure-theoretic intricacy and measure-theoretic average sample complexity exist.

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and fix the system of coefficients $c_S^n = 2^{-n}$. Then

$$\sup_{\alpha} \mathsf{Asc}_{\mu}(X, \alpha, T) = h_{\mu}(X, T).$$

The proofs are similar to those for the corresponding theorems in topological setting. These observations indicate that there may be a topological analogue of the following result.

The limits in the definitions of measure-theoretic intricacy and measure-theoretic average sample complexity exist.

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and fix the system of coefficients $c_S^n = 2^{-n}$. Then

$$\sup_{\alpha} \mathsf{Asc}_{\mu}(X, \alpha, T) = h_{\mu}(X, T).$$

The proofs are similar to those for the corresponding theorems in topological setting. These observations indicate that there may be a topological analogue of the following result.

Theorem (Ornstein-Weiss, 2007)

If J is a finitely observable functional defined for ergodic finite-valued processes that is an isomorphism invariant, then J is a continuous function of the measure-theoretic entropy.

▶ The arguments adapt to open covers (\mathcal{U}_k) and partitions α_k .

- ▶ The arguments adapt to open covers (\mathcal{U}_k) and partitions α_k .
- ▶ So it is better to examine these measures *locally*:

- ▶ The arguments adapt to open covers (\mathcal{U}_k) and partitions α_k .
- ▶ So it is better to examine these measures *locally*:
- Fix a k and find the topological average sample complexity $Asc(X, \mathcal{U}_k, \sigma) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \log N((\mathcal{U}_k)_S),$

- ▶ The arguments adapt to open covers (U_k) and partitions α_k .
- ▶ So it is better to examine these measures *locally*:
- Fix a k and find the topological average sample complexity $Asc(X, \mathcal{U}_k, \sigma) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \log N((\mathcal{U}_k)_S),$
- ▶ or do not take the limit on n, and study it as a function of n,

- ▶ The arguments adapt to open covers (\mathcal{U}_k) and partitions α_k .
- So it is better to examine these measures locally:
- Fix a k and find the topological average sample complexity

analogously to the symbolic or topological complexity

functions.

- $Asc(X, \mathcal{U}_k, \sigma) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \log N((\mathcal{U}_k)_S),$
- \triangleright or do not take the limit on n, and study it as a function of n,

- ▶ The arguments adapt to open covers (\mathcal{U}_k) and partitions α_k .
- ► So it is better to examine these measures *locally*:
- Fix a k and find the topological average sample complexity $Asc(X, \mathcal{U}_k, \sigma) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \log N((\mathcal{U}_k)_S),$
- or do not take the limit on n, and study it as a function of n,
- analogously to the symbolic or topological complexity functions.
- Similarly for the measure-theoretic version: fix a partition α and study the limit, or the function of n.

$$\mathsf{Asc}_{\mu}(X, T, \alpha) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n H_{\mu}(\alpha_S).$$

So we begin study of Asc for a fixed open cover as a function of n.

$$\operatorname{Asc}(X, \sigma, \mathcal{U}_k, n) = \frac{1}{n} \sum_{S \subset n^*} c_S^n \log N(S).$$

So we begin study of Asc for a fixed open cover as a function of n.

$$\mathsf{Asc}(X,\sigma,\mathfrak{U}_k,n) = \frac{1}{n} \sum_{S \subset n^*} c_S^n \log N(S).$$

Example

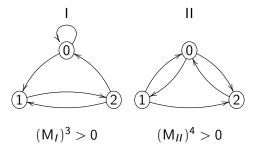
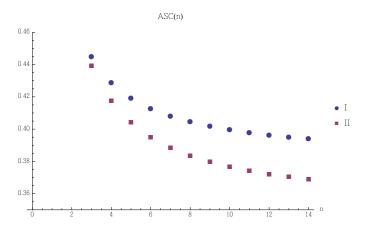


Figure: Graphs of two subshifts with the same complexity function but different average sample complexity functions.

$Asc(n) = \frac{1}{n} \frac{1}{2^n} \sum_{S \subset n^*} \log N(S)$



Interesting example

Adjacency Graph	h_{top}	Asc(10)	Int(10)
1 2	0.481	0.399	0.254
1 2	0.481	0.377	0.208

These SFTs have the same entropy and complexity functions (words of length n) but different Asc and Int functions.

For a fixed partition α , we give a relationship between $\mathrm{Asc}_{\mu}(X,\alpha,T)$ and a series summed over i involving the conditional entropies $H_{\mu}(\alpha \mid \alpha_i^{\infty})$.

For a fixed partition α , we give a relationship between $\mathrm{Asc}_{\mu}(X,\alpha,T)$ and a series summed over i involving the conditional entropies $H_{\mu}(\alpha \mid \alpha_i^{\infty})$.

Idea

For a fixed partition α , we give a relationship between $\mathrm{Asc}_{\mu}(X,\alpha,T)$ and a series summed over i involving the conditional entropies $H_{\mu}(\alpha \mid \alpha_i^{\infty})$.

Idea

▶ View a subset $S \subset n^*$ as corresponding to a random binary string of length n generated by Bernoulli measure $\mathfrak{B}(1/2,1/2)$ on the full 2-shift.

For a fixed partition α , we give a relationship between $\mathrm{Asc}_{\mu}(X,\alpha,T)$ and a series summed over i involving the conditional entropies $H_{\mu}(\alpha \mid \alpha_i^{\infty})$.

Idea

- ▶ View a subset $S \subset n^*$ as corresponding to a random binary string of length n generated by Bernoulli measure $\mathfrak{B}(1/2,1/2)$ on the full 2-shift.
- ▶ For example $\{0, 2, 3\} \subset 5^* \leftrightarrow 10110$.

For a fixed partition α , we give a relationship between $\mathrm{Asc}_{\mu}(X,\alpha,T)$ and a series summed over i involving the conditional entropies $H_{\mu}(\alpha \mid \alpha_i^{\infty})$.

Idea

- ▶ View a subset $S \subset n^*$ as corresponding to a random binary string of length n generated by Bernoulli measure $\mathfrak{B}(1/2,1/2)$ on the full 2-shift.
- ▶ For example $\{0, 2, 3\} \subset 5^* \leftrightarrow 10110$.
- ▶ The average entropy, $H_{\mu}(\alpha_S)$, over all $S \subset n^*$, is then an integral and can be interpreted in terms of the entropy of a first-return map to the cylinder A = [1] in a cross product of our system X and the full 2-shift, Σ_2 .

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and α a finite measurable partition of X. Let $A = [1] = \{\xi \in \Sigma_2^+ : \xi_0 = 1\}$ and $\beta = \alpha \times A$ the related finite partition of $X \times A$. Denote by $T_{X \times A}$ the first-return map on $X \times A$ and let $P_A = P/P[1]$ denote the measure P restricted to A and normalized. Let $c_S^n = 2^{-n}$ for all $S \subset n^*$. Then

$$Asc_{\mu}(X, \alpha, T) = \frac{1}{2} h_{\mu \times P_A}(X \times A, \beta, T_{X \times A}).$$

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and α a finite measurable partition of X. Let $A = [1] = \{\xi \in \Sigma_2^+ : \xi_0 = 1\}$ and $\beta = \alpha \times A$ the related finite partition of $X \times A$. Denote by $T_{X \times A}$ the first-return map on $X \times A$ and let $P_A = P/P[1]$ denote the measure P restricted to A and normalized. Let $c_S^n = 2^{-n}$ for all $S \subset n^*$. Then

$$Asc_{\mu}(X, \alpha, T) = \frac{1}{2} h_{\mu \times P_A}(X \times A, \beta, T_{X \times A}).$$

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and α a finite measurable partition of X. Let $c_S^n = 2^{-n}$ for all $S \subset n^*$. Then

$$\mathsf{Asc}_{\mu}(X, \alpha, T) \geqslant \frac{1}{2} \sum_{i=1}^{\infty} \frac{1}{2^{i}} H_{\mu} \left(\alpha \mid \alpha_{i}^{\infty} \right).$$

Equality holds in certain cases (in particular, for Markov shifts)

In the topological case the first-return map $T_{X\times A}$ is not continuous nor expansive nor even defined on all of $X\times A$ in general, so known results about measures of maximal entropy and equilibrium states do not apply.

In the topological case the first-return map $T_{X\times A}$ is not continuous nor expansive nor even defined on all of $X\times A$ in general, so known results about measures of maximal entropy and equilibrium states do not apply. To maximize Int, there is the added problem of the minus sign in

$$Int(X, \mathcal{U}, T) = 2 \operatorname{Asc}(X, \mathcal{U}, T) - h_{top}(X, \mathcal{U}, T).$$

In the topological case the first-return map $T_{X \times A}$ is not continuous nor expansive nor even defined on all of $X \times A$ in general, so known results about measures of maximal entropy and equilibrium states do not apply. To maximize Int, there is the added problem of the minus sign in

$$Int(X, \mathcal{U}, T) = 2 \operatorname{Asc}(X, \mathcal{U}, T) - h_{top}(X, \mathcal{U}, T).$$

Maybe some modern work on local or relative variational principles, almost subadditive potentials, equilibrium states for shifts with infinite alphabets, etc. could apply? (Barreira, Mummert, Yayama, Cao-Feng-Huang, Huang-Ye-Zhang, Huang-Maass-Romagnoli-Ye, Cheng-Zhao-Cao, ...)

In the topological case the first-return map $T_{X \times A}$ is not continuous nor expansive nor even defined on all of $X \times A$ in general, so known results about measures of maximal entropy and equilibrium states do not apply. To maximize Int, there is the added problem of the minus sign in

$$Int(X, \mathcal{U}, T) = 2 Asc(X, \mathcal{U}, T) - h_{top}(X, \mathcal{U}, T).$$

Maybe some modern work on local or relative variational principles, almost subadditive potentials, equilibrium states for shifts with infinite alphabets, etc. could apply? (Barreira, Mummert, Yayama, Cao-Feng-Huang, Huang-Ye-Zhang, Huang-Maass-Romagnoli-Ye, Cheng-Zhao-Cao, ...)

But the above theorem does give up some information immediately:

In the topological case the first-return map $T_{X\times A}$ is not continuous nor expansive nor even defined on all of $X\times A$ in general, so known results about measures of maximal entropy and equilibrium states do not apply. To maximize Int, there is the added problem of the minus sign in

$$Int(X, \mathcal{U}, T) = 2 \operatorname{Asc}(X, \mathcal{U}, T) - h_{top}(X, \mathcal{U}, T).$$

Maybe some modern work on local or relative variational principles, almost subadditive potentials, equilibrium states for shifts with infinite alphabets, etc. could apply? (Barreira, Mummert, Yayama, Cao-Feng-Huang, Huang-Ye-Zhang, Huang-Maass-Romagnoli-Ye, Cheng-Zhao-Cao, ...)

But the above theorem does give up some information immediately:

Proposition

When $T: X \to X$ is an expansive homeomorphism on a compact metric space (e.g., a subshift), $\mathsf{Asc}_\mu(X, T, \alpha)$ is an affine upper semicontinuous (in the weak* topology) function of μ , so the set of maximal measures for $\mathsf{Asc}_\mu(X, T, \alpha)$ is nonempty, compact, and convex and contains ergodic measures (see Walters, p. 198 ff.).

Consider the measure on the shift space (Σ_n, σ) given by s stochastic matrix $P = (P_{ij})$ and fixed probability vector $p = (p_0 \ p_1 \ \dots \ p_{n-1})$, i.e. $\sum p_i = 1$ and pP = p.

- Consider the measure on the shift space (Σ_n, σ) given by s stochastic matrix $P = (P_{ij})$ and fixed probability vector $p = (p_0 \ p_1 \ \dots \ p_{n-1})$, i.e. $\sum p_i = 1$ and pP = p.
- ► The measure $\mu_{P,p}$ is defined as usual on cylinder sets by $\mu_{p,P}[i_0i_1\dots i_k] = p_{i_0}P_{i_0i_1}\dots P_{i_{k-1}i_k}$.

- Consider the measure on the shift space (Σ_n, σ) given by s stochastic matrix $P = (P_{ij})$ and fixed probability vector $p = (p_0 \ p_1 \ \dots \ p_{n-1})$, i.e. $\sum p_i = 1$ and pP = p.
- ► The measure $\mu_{P,p}$ is defined as usual on cylinder sets by $\mu_{p,P}[i_0i_1\dots i_k] = p_{i_0}P_{i_0i_1}\dots P_{i_{k-1}i_k}$.

Example (1-step Markov measure on the golden mean shift) Denote by $P_{00} \in [0,1]$ the probability of going from 0 to 0 in a sequence of $X_{\{11\}} \subset \Sigma_2$. Then

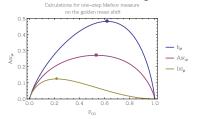
$$P = \left(\begin{array}{cc} P_{00} & 1 - P_{00} \\ 1 & 0 \end{array} \right), \quad p = \left(\begin{array}{cc} \frac{1}{2 - P_{00}} & \frac{1 - P_{00}}{2 - P_{00}} \end{array} \right)$$

- Consider the measure on the shift space (Σ_n, σ) given by s stochastic matrix $P = (P_{ij})$ and fixed probability vector $p = (p_0 \ p_1 \ \dots \ p_{n-1})$, i.e. $\sum p_i = 1$ and pP = p.
- ► The measure $\mu_{P,p}$ is defined as usual on cylinder sets by $\mu_{p,P}[i_0i_1\dots i_k] = p_{i_0}P_{i_0i_1}\dots P_{i_{k-1}i_k}$.

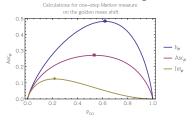
Example (1-step Markov measure on the golden mean shift) Denote by $P_{00} \in [0,1]$ the probability of going from 0 to 0 in a sequence of $X_{\{11\}} \subset \Sigma_2$. Then

$$P = \left(egin{array}{cc} P_{00} & 1 - P_{00} \\ 1 & 0 \end{array}
ight), \quad p = \left(egin{array}{cc} rac{1}{2 - P_{00}} & rac{1 - P_{00}}{2 - P_{00}} \end{array}
ight)$$

Using the series formula and known equations for conditional entropy, we approximate Asc_μ and Int_μ for Markov measures on SFTs.

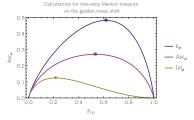


P_{00}	h_{μ}	Asc_{μ}	Int_{μ}
0.618	0.481	0.266	0.051
0.533	0.471	0.271	0.071
0.216	0.292	0.208	0.124



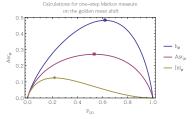
$\overline{P_{00}}$	h_{μ}	Asc_{μ}	Int_{μ}
0.618	0.481	0.266	0.051
0.533	0.471	0.271	0.071
0.216	0.292	0.208	0.124

• Maximum value of $h_{\mu} = h_{top} = \log \phi$ when $P_{00} = 1/\phi$



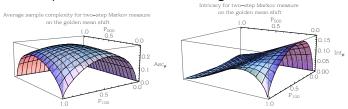
P_{00}	h_{μ}	Asc_{μ}	Int_{μ}
0.618	0.481	0.266	0.051
0.533	0.471	0.271	0.071
0.216	0.292	0.208	0.124

- Maximum value of $h_{\mu} = h_{\text{top}} = \log \phi$ when $P_{00} = 1/\phi$
- \blacktriangleright Unique maxima among 1-step Markov measures for Asc_μ and Int_μ

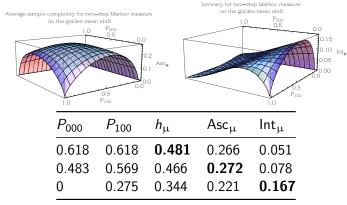


P_{00}	h_{μ}	Asc_{μ}	Int_{μ}
0.618	0.481	0.266	0.051
0.533	0.471	0.271	0.071
0.216	0.292	0.208	0.124

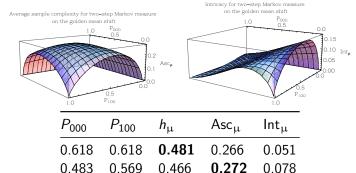
- Maximum value of $h_{\mu} = h_{top} = \log \phi$ when $P_{00} = 1/\phi$
- ▶ Unique maxima among 1-step Markov measures for Asc_μ and Int_μ
- ► The maxima for Asc_{μ} , Int_{μ} , and h_{μ} are achieved by different measures



P_{000}	P_{100}	h_{μ}	Asc_{μ}	Int_{μ}
0.618	0.618	0.481	0.266	0.051
0.483	0.569	0.466	0.272	0.078
0	0.275	0.344	0.221	0.167

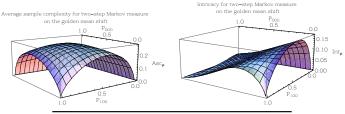


 \blacktriangleright Asc_μ appears to be strictly convex, so it would have a unique maximum among 2-step Markov measures



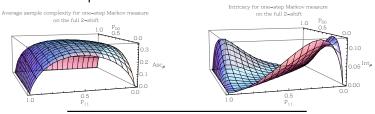
	0	0.275	0.344	0.221	0.167	
۸۵۵			ctly conv	, co i+	would bow	

- \blacktriangleright Asc $_\mu$ appears to be strictly convex, so it would have a unique maximum among 2-step Markov measures
- Int_{μ} appears to have a unique maximum among 2-step Markov measures on a proper subshift ($P_{000}=0$)

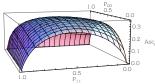


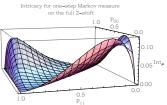
P_{000}	P_{100}	h_{μ}	Asc_{μ}	Int_{μ}
0.618	0.618	0.481	0.266	0.051
0.483	0.569	0.466	0.272	0.078
0	0.275	0.344	0.221	0.167

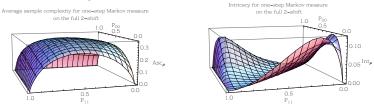
- Asc_μ appears to be strictly convex, so it would have a unique maximum among 2-step Markov measures
- Int_{μ} appears to have a unique maximum among 2-step Markov measures on a proper subshift ($P_{000} = 0$)
- ► The maxima for Asc_{μ} , Int_{μ} , and h_{μ} are achieved by different measures



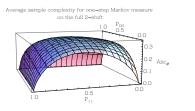
P ₀₀	P_{11}	h_{μ}	Asc_{μ}	Int_{μ}
0.5	0.5	0.693	0.347	0
0.216	0	0.292	0.208	0.124
0	0.216	0.292	0.208	0.124
0.905	0.905	0.315	0.209	0.104

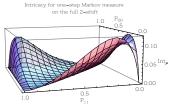




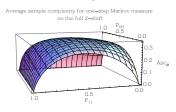


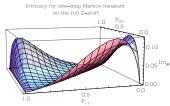
 \blacktriangleright Asc $_\mu$ appears to be strictly convex, so it would have a unique maximum among 1-step Markov measures



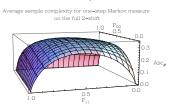


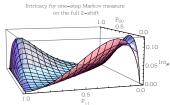
- ightharpoonup Asc $_{\mu}$ appears to be strictly convex, so it would have a unique maximum among 1-step Markov measures
- Int_{μ} appears to have two maxima among 1-step Markov measures on proper subshifts ($P_{00}=0$ and $P_{11}=0$).



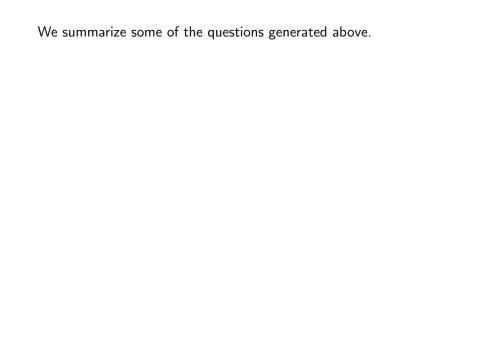


- ightharpoonup Asc $_{\mu}$ appears to be strictly convex, so it would have a unique maximum among 1-step Markov measures
- Int_{μ} appears to have two maxima among 1-step Markov measures on proper subshifts ($P_{00} = 0$ and $P_{11} = 0$).
- ▶ There seems to be a 1-step Markov measure that is fully supported and is a local maximum for Int_{μ} among all 1-step Markov measures.





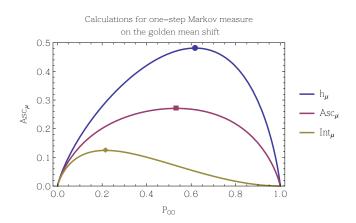
- Asc_μ appears to be strictly convex, so it would have a unique maximum among 1-step Markov measures
- Int_{μ} appears to have two maxima among 1-step Markov measures on proper subshifts ($P_{00} = 0$ and $P_{11} = 0$).
- ▶ There seems to be a 1-step Markov measure that is fully supported and is a local maximum for ${\sf Int}_{\mu}$ among all 1-step Markov measures.
- ► The maxima for Asc_{μ} , Int_{μ} , and h_{μ} are achieved by different measures.



We summarize some of the questions generated above. Conj. 1: On the golden mean SFT, for each r there is a unique r-step Markov measure μ_r that maximizes $\mathrm{Asc}_{\mu}(X,\sigma,\alpha)$ among all r-step Markov measures.

We summarize some of the questions generated above. Conj. 1: On the golden mean SFT, for each r there is a unique r-step Markov measure μ_r that maximizes $\mathrm{Asc}_{\mu}(X, \sigma, \alpha)$ among

all r-step Markov measures.



Conj. 2: $\mu_2 \neq \mu_1$

Conj. 2: $\mu_2 \neq \mu_1$

P_{00}	h_{μ}	Asc_{μ}	Int_{μ}
0.618	0.481	0.266	0.051
0.533	0.471	0.271	0.071
0.216	0.292	0.208	0.124

Table: Calculations for one-step Markov measures on the golden mean shift. Bolded numbers are maxima for given category.

Conj. 2: $\mu_2 \neq \mu_1$

P_{00}	h_{μ}	Asc_{μ}	Int_{μ}
0.618	0.481	0.266	0.051
0.533	0.471	0.271	0.071
0.216	0.292	0.208	0.124

Table: Calculations for one-step Markov measures on the golden mean shift. Bolded numbers are maxima for given category.

P_{000}	P ₁₀₀	h_{μ}	Asc_{μ}	Int_{μ}
			0.266 0.272	
0	0.275	0.344	0.221	0.167

Table: Calculations for two-step Markov measures on the golden mean shift.

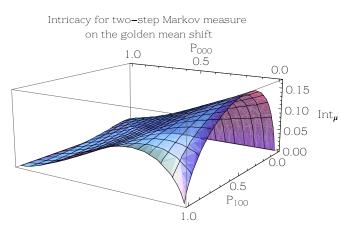
Conj. 3: On the golden mean SFT there is a unique measure that maximizes ${\sf Asc}_{\mu}(X,T,\alpha)$. It is not Markov of any order (and of course is not the same as $\mu_{\sf max}$).

Conj. 3: On the golden mean SFT there is a unique measure that maximizes $\operatorname{Asc}_{\mu}(X, T, \alpha)$. It is not Markov of any order (and of course is not the same as μ_{\max}).

Conj. 4: On the golden mean SFT for each r there is a unique r-step Markov measure that maximizes $\operatorname{Int}_{\mu}(X, T, \alpha)$ among all r-step Markov measures.

Conj. 3: On the golden mean SFT there is a unique measure that maximizes ${\sf Asc}_{\mu}(X,T,\alpha)$. It is not Markov of any order (and of course is not the same as $\mu_{\sf max}$).

Conj. 4: On the golden mean SFT for each r there is a unique r-step Markov measure that maximizes $\operatorname{Int}_{\mu}(X,\,T,\,\alpha)$ among all r-step Markov measures.



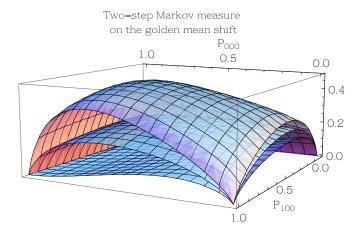
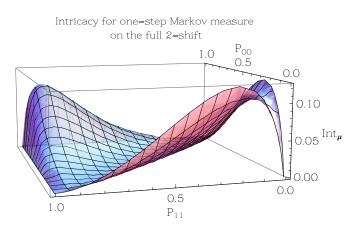


Figure: Combination of the plots of h_{μ} , Asc_{μ} , and Int_{μ} for two-step Markov measures on the golden mean shift.

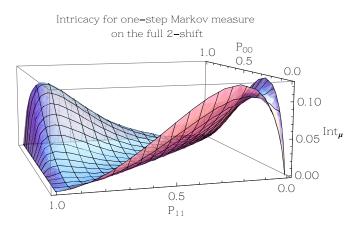
Conj. 5: On the 2-shift there are *two* 1-step Markov measures that maximize $\operatorname{Int}_{\mu}(X,\mathcal{T},\alpha)$ among all 1-step Markov measures. They are supported on the golden mean SFT and its image under the dualizing map $0 \leftrightarrow 1$.

Conj. 5: On the 2-shift there are two 1-step Markov measures that maximize $Int_{\mu}(X,\mathcal{T},\alpha)$ among all 1-step Markov measures. They are supported on the golden mean SFT and its image under the dualizing map $0\leftrightarrow 1$.



Conj. 6: On the 2-shift there is a 1-step Markov measure that is fully supported and is a local maximum point for $\operatorname{Int}_{\mu}(X, T, \alpha)$ among all 1-step Markov measures.

Conj. 6: On the 2-shift there is a 1-step Markov measure that is fully supported and is a local maximum point for $\operatorname{Int}_{\mu}(X,T,\alpha)$ among all 1-step Markov measures.



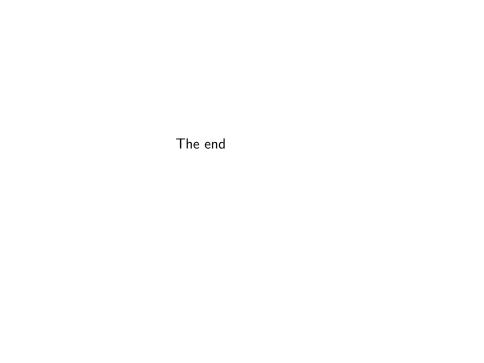
► The conjectures extend to arbitrary shifts of finite type and other dynamical systems.

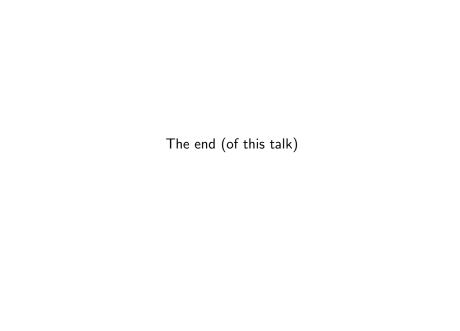
- ► The conjectures extend to arbitrary shifts of finite type and other dynamical systems.
- We do not know whether there is a variational principle $\sup_{\mu} Asc_{\mu}(X, T, \alpha) = Asc_{top}(X, T)$.

- ► The conjectures extend to arbitrary shifts of finite type and other dynamical systems.
- We do not know whether there is a variational principle $\sup_{\mu} \mathrm{Asc}_{\mu}(X, T, \alpha) = \mathrm{Asc}_{\mathsf{top}}(X, T).$
- ▶ Analogous definitions, results, and conjectures exist when entropy is generalized to pressure, by including a potential function which measures the energy or cost associated with each configuration.

- ► The conjectures extend to arbitrary shifts of finite type and other dynamical systems.
- We do not know whether there is a variational principle $\sup_{\mu} \mathrm{Asc}_{\mu}(X, T, \alpha) = \mathrm{Asc}_{\mathsf{top}}(X, T).$
- ► Analogous definitions, results, and conjectures exist when entropy is generalized to pressure, by including a potential function which measures the energy or cost associated with each configuration.
- ► First one can consider a function of just a single coordinate that gives the value of each symbol.

- ► The conjectures extend to arbitrary shifts of finite type and other dynamical systems.
- We do not know whether there is a variational principle $\sup_{\mu} \mathsf{Asc}_{\mu}(X, \mathcal{T}, \alpha) = \mathsf{Asc}_{\mathsf{top}}(X, \mathcal{T}).$
- Analogous definitions, results, and conjectures exist when entropy is generalized to pressure, by including a potential function which measures the energy or cost associated with each configuration.
- First one can consider a function of just a single coordinate that gives the value of each symbol.
- Maximum intricacy may be useful for finding areas of high information activity, such as working regions in a brain (Edelman-Sporns-Tononi) or coding regions in genetic material (Koslicki-Thompson).





The end (of this talk) (and series).