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Contrasting brain actions in higher vertebrates:

1. Specificity and modularity (functional segregation)

2. Global functions and mass actions (integration in perception
and behavior)
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Neural Complexity (G. Edelman, O. Sporns, G. Tononi, 1994)

» Neither specificity nor coordination alone adequately accounts
for brain activity.

> So they propose a general measure—intricacy— that
encompasses these fundamental aspects of brain organization.

» High values are associated with non-trivial organization of the
network. This is the case when segregation coexists with
integration.

> Low values are associated with systems that are either
completely independent (segregated, disordered) or completely
dependent (integrated, ordered).



Intricacy is an average of the interaction, measured by mutual
information, between sets of sites and their complements.



Mutual Information
Entropy of a random variable X taking values in a discrete set E:

H(X) == Pr{X = x}log Pr{X = x]}.
x€E

Mutual information between random variables X and Y over the
same probability space:

MI(X,Y) = H(X)+ H(Y)—H(X, Y).

» MI(X,Y)>0
» MI(X,Y)=0<« X and Y are independent



» n*={0,1...,n—1}

» X ={X;:i € n*}a family of random variables representing an
isolated neural system with n elementary components
(neuronal groups)

» ForSCn*, Xs ={X;:ie S}
» SS=n*\S.

Intricacy (or Neural Complexity), Cy

Average of mutual information over subfamilies of a family of
random variables

Cu(X) = — Z(i)/v//(xs,xsc).
Scnx S|



Intricacies in probability (J. Buzzi, L. Zambotti, 2009)

» Give a general probabilisitic representation of neural
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Intricacies in probability (J. Buzzi, L. Zambotti, 2009)
» Give a general probabilisitic representation of neural
complexity.

» Neural complexity belongs to a natural class of functionals:
weighted averages of mutual information whose weights
satisfy certain properties.

System of coefficients

A system of coefficients, cZ, is a family of numbers satisfying for
alneNand S C n*

1. cg >0
2. ) sepmce=1;
3. ¢ = cg.



Mutual information functional
» For a fixed n € N let X ={X;:i € n*} be a collection of
random variables all taking values in the same finite set.

» Given a system of coefficients, cZ, the corresponding mutual
information functional, 3¢(X) is defined by

1°(X) = ) cEMI(Xs, Xsc).
SCn*



Mutual information functional
» For a fixed n € N let X ={X;:i € n*} be a collection of
random variables all taking values in the same finite set.

» Given a system of coefficients, cZ, the corresponding mutual
information functional, 3¢(X) is defined by

1°(X) = ) cEMI(Xs, Xsc).
SCn*

Intricacies: Probabilistic definition
An intricacy is a mutual information functional satisfying:

1. Exchangeability: invariance by permutations of n;
2. Weak additivity: J¢(X, Y) =7I°(X) +I°(Y) for any two
independent systems X ={X;:i € n*}and Y ={Yj:j € m*}.



Theorem (Buzzi, Zambotti)

Let cd be a system of coefficients and J¢ the associated mutual
information functional. J¢ is an intricacy if and only if there exists
a symmetric probability measure A on [0, 1] such that

= J xI51(1 = x)" 1S\ (dx)
[0,1]



Theorem (Buzzi, Zambotti)

Let cd be a system of coefficients and J¢ the associated mutual
information functional. J¢ is an intricacy if and only if there exists
a symmetric probability measure A on [0, 1] such that

= J xI51(1 = x)" 1S\ (dx)
[0,1]

1 1
(n+1) (Igl)
2. ForO< p<1,

1. cd= (Edelman-Sporns-Tononi);

1 - - .
c8 = S (P11 = p)" B+ (1= p) *1p" ) (p-symmetric);

3. For p=1/2, cZ = 27" (uniform).
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Definitions in Dynamics

Topological dynamical system, (X, T)
» X a compact Hausdorff (often metric) space;

» T :X — X a homeomorphism.

For an open cover U of X, recall that N(U) is the minimum
cardinality of any subcover of U.

Definition (Adler, Konheim, McAndrew, 1965)
The topological entropy of (X, T) is defined by

1
htop(Xy T) = sup lim — |Og N(U\/ Tﬁluv oV T*”Jrlu)_

u n—oo N

Measure of randomness or disorder of a system.
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Let (X, T) be a topological dynamical system and U an open
cover of X. Given n € N and a subset S C n* define

Us=\/ T
i€S

Definition (P-W)

Let cg be a system of coefficients. Define the topological intricacy
of (X, T) with respect to the open cover U to be

—him 1Y criog ((MNUSIN(Use)



Definition (P-W)
The topological average sample complexity of T with respect to
the open cover U is defined to be

1
Asc(X, U, T):= lim =} cZlog N(UUs).
n—oo N SCn*



Definition (P-W)
The topological average sample complexity of T with respect to
the open cover U is defined to be

1
Asc(X, U, T):= lim =} cZlog N(UUs).
n—oo N SCn*

So Int(X,U, T) =2Asc(X,U, T) — hop(X, U, T).



Theorem
The limits in the definitions of Int(X, U, T) and Asc(X,U, T) exist.

Proof based on subadditivity of the sequence
b, = Z cg log N(Us)
SCn*
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Theorem
The limits in the definitions of Int(X, U, T) and Asc(X,U, T) exist.

Proof based on subadditivity of the sequence

b, = Z cg log N(Us)
SCn*

and Fekete's Subadditive Lemma: For every subadditive sequence
an, the limit lim,_, o a,/n exists and is equal to inf, a,/n.

Proposition

For each open cover U,

Asc(X, U, T) < heop(X, U, T) < hiop(X, T), and hence
Int(X, U, T) < heop(X, U, T) < heop(X, T).

In particular, a dynamical system with zero (or relatively low)

topological entropy (integrated, ordered) has zero (or relatively
low) topological intricacy.
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Recall that the set of words of length n in a subshift X is denoted
by £,(X).

For a subset S C n*, S ={sp, 51,...,5/5—1}, denote the set of
words we can see at the places in S for all words in £,(X) by

Ls(X):
Ls(X) ={wsws, ... Weg_, :w=wowi...wp_1 € Ln(X)}.

Notice L.+ (X) = L£,(X).



Intricacy of a subshift, X

1
Int(X,Ug, 0) = nImeE Z cg log
SCn*

<|135(X)||55c(X)|>
|Ln*(X)|



Intricacy of a subshift, X

e (1EsXLs(X))
Int(X,Ug, 0) = nlmmnsé* cd Iog( 2o (X)) )

Example (Computing |Ls(X)| for the golden mean sft)
Let n =3, n* ={0,1,2}.

5$={0,1} 5={0,2}
0 O 0 0
0 1 0 1
1 0 1 0

1 1

ILs(X) =3 [Ls(X)| =4



Example (Computing |Ls(X)| for the golden mean sft)

S S Ls(X) 1Lse(X)
o {0,1,2} 1 5
0y {12 2 3
(1 {0,2} 2 4
2} {01} 2 3
0,1 {2} 3 2
0,2} {1} 4 2
1,2y {0} 3 2
0,1,2) 0 5 1




Example (Computing |Ls(X)| for the golden mean sft)

S S Ls(X) 1Lse(X)
o {0,1,2} 1 5
0y {12 2 3
(1 {0,2} 2 4
2} {01} 2 3
0,1 {2} 3 2
0,2} {1} 4 2
1,2y {0} 3 2
0,1,2) 0 5 1

1 LsNEs X _ 1, (6"
| = —| ~ 0.070
gEps o (o 2 %8\ 58
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Theorem
Let X be a shift of finite type with adjacency matrix M such that
M? > 0. Let cd =2""forall S. Then

log | £+ (X))

1 o0
Asc(X,uo,G):ZZ ok

k=1

Asc is sensitive to word counts of all lengths, so is a finer
measurement than h,p, which just gives the asymptotic
exponential growth rate.

Proof idea: Most subsets S C n* are also subsets of (n— 1)*.

Corollary
For the full r-shift with ¢ = 27" for all S,

|
Asc(Zr,uo,cr):% and  Int(Z,, Up, o) = 0.



Adjacency Graph Entropy Asc Int

Disordered @:_:@ 0.693 0347 0

0.481 0.286  0.090

Ordered

i
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> In ordinary topological entropy of a subshift, using the time-0
partition (or open cover) «, when we replace o« by
o ocg_l in counting the number of cells or calculating the
entropy of the refined partition, instead of o+, we are looking
at &(pyk)+, and when k is fixed, as n grows the result is the
same.



Theorem
Let (X, T) be a topological dynamical system and fix the system
of coefficients to be c =27". Then

supAsc(X,U, T) = heop(X, T).
u

» The proof depends on the structure of average subsets of
n*={0,1,...,n—1}

» Most S C n* have size about n/2, so are not too sparse.

> In ordinary topological entropy of a subshift, using the time-0
partition (or open cover) «, when we replace o« by
o ocg_l in counting the number of cells or calculating the
entropy of the refined partition, instead of o+, we are looking
at &(pyk)+, and when k is fixed, as n grows the result is the
same.

» When we code by k-blocks, S C n* is replaced by S + k*, and
the effect on g, x+ as compared to «g is similar, since it acts
similarly on each of the long subintervals comprising S.



» Fix a k for coding by k-blocks (or looking at N((U)s) or
H((ow)s))-



» Fix a k for coding by k-blocks (or looking at N((U)s) or
H((ok)s)).
» Cut n* into consecutive blocks of length k/2.



» Fix a k for coding by k-blocks (or looking at N((U)s) or
H((ok)s)).
» Cut n* into consecutive blocks of length k/2.

» When s € S is in one of these intervals of length k/2, then
s + k* covers the next interval of length k/2.



» Fix a k for coding by k-blocks (or looking at N((U)s) or
H((ok)s)).

» Cut n* into consecutive blocks of length k/2.

» When s € S is in one of these intervals of length k/2, then
s + k* covers the next interval of length k/2.

» So if S hits many of the intervals of length k/2, then S + k*
starts to look like a union of long intervals, say each with
|Ej| > k.



» Fix a k for coding by k-blocks (or looking at N((U)s) or
H((ok)s)).
» Cut n* into consecutive blocks of length k/2.

» When s € S is in one of these intervals of length k/2, then
s + k* covers the next interval of length k/2.

» So if S hits many of the intervals of length k/2, then S + k*
starts to look like a union of long intervals, say each with
|Ej| > k.

» By shaving a little off each of these relatively long intervals,
we can assume that also the gaps have length at least k.



» Fix a k for coding by k-blocks (or looking at N((U)s) or
H((ok)s)).
» Cut n* into consecutive blocks of length k/2.

» When s € S is in one of these intervals of length k/2, then
s + k* covers the next interval of length k/2.

» So if S hits many of the intervals of length k/2, then S + k*
starts to look like a union of long intervals, say each with
|Ej| > k.

» By shaving a little off each of these relatively long intervals,
we can assume that also the gaps have length at least k.



» Fix a k for coding by k-blocks (or looking at N((U)s) or
H((ok)s)).
» Cut n* into consecutive blocks of length k/2.

» When s € S is in one of these intervals of length k/2, then
s + k* covers the next interval of length k/2.

» So if S hits many of the intervals of length k/2, then S + k*
starts to look like a union of long intervals, say each with
|Ej| > k.

» By shaving a little off each of these relatively long intervals,
we can assume that also the gaps have length at least k.



» Fix a k for coding by k-blocks (or looking at N((U)s) or
H((ok)s)).
» Cut n* into consecutive blocks of length k/2.

» When s € S is in one of these intervals of length k/2, then
s + k* covers the next interval of length k/2.

» So if S hits many of the intervals of length k/2, then S + k*
starts to look like a union of long intervals, say each with
|Ej| > k.

» By shaving a little off each of these relatively long intervals,
we can assume that also the gaps have length at least k.



» Fix a k for coding by k-blocks (or looking at N((U)s) or
H((ok)s)).
» Cut n* into consecutive blocks of length k/2.
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s + k* covers the next interval of length k/2.
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Given € > 0, we may assume k is large enough that for every
interval I C N with |I| > k/2,

< log N(1)
card(/)

— heop(X, 0) < €.

We let 9B denote the set of S C n* which miss at least 2ne/k
of the intervals of length k/2

card(®8)

and show that lim =0.

n—00

If S ¢ B, then S hits many of the intervals of length k/2,

and hence S + k* is the union of intervals of length at least k,
and we can arrange that the gaps are also long enough to
satisfy the above estimate comparing to hop (X, 0).



Measure-theoretic situation

Measure-theoretic dynamical system (X, B, u, T)

» X is a measure space
> B is a o-algebra of measurable subsets of X
> W is a probability measure on X, i.e., u(X) =1

» T :X — X is a measure-preserving transformation on X, i.e.,

T is a one-to-one onto map such that (7T 1E) = u(E) for
al EeB



Measure-theoretic situation

Measure-theoretic dynamical system (X, B, u, T)

» X is a measure space
> B is a o-algebra of measurable subsets of X
> W is a probability measure on X, i.e., u(X) =1

» T :X — X is a measure-preserving transformation on X, i.e.,

T is a one-to-one onto map such that (7T 1E) = u(E) for
al EeB

Entropy of a partition
The entropy of a finite measurable partition &« = {Aq, ..., Ap} of X

is defined by
Z W(A;) log 1(A)).



Definition
The entropy of X and T with respect to u and a partition « is

1
hy(X, 0, T) = lim —Hy(aV T V.oV T ),

n—oo N

The entropy of the transformation T is defined to be

hu(X, T) = sup hy (X, &, T).
X
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For a partition o of X and a subset S C n* define

xXs = \/ T

ies

Definition (P-W)
Let (X, B, u, T) be a measure-preserving system, & = {A1,..., An}
a finite measurable partition of X, and cg a system of coefficients.
The measure-theoretic intricacy of T with respect to the partition
x is
.1 n
Int, (X, o, T) = lim = c2[Hy(as) + Hy(otse) — Hyl(otne)].

n—oo N
SCn*



For a partition o of X and a subset S C n* define

xXs = \/ T

ies

Definition (P-W)
Let (X, B, u, T) be a measure-preserving system, & = {A1,..., An}
a finite measurable partition of X, and cg a system of coefficients.
The measure-theoretic intricacy of T with respect to the partition
x is
Int, (X, T) = lim 1 D cllHyulas) + Hy(otse) — Hy(on )]
v 8 ' ' n—00 N S [*8 S 8 S o8 n .
SCn*
The measure-theoretic average sample complexity of T with
respect to the partition « is

1 ,
Ascu(X, e, T) = lim — Sg* c@Hy(as).
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Theorem
The limits in the definitions of measure-theoretic intricacy and
measure-theoretic average sample complexity exist.

Theorem
Let (X,B,u, T) be a measure-preserving system and fix the
system of coefficients c¢ =2~". Then

supAscy, (X, «, T) = hy (X, T).
[0 8

The proofs are similar to those for the corresponding theorems in
topological setting. These observations indicate that there may be a
topological analogue of the following result.

Theorem (Ornstein-Weiss, 2007)

If J is a finitely observable functional defined for ergodic
finite-valued processes that is an isomorphism invariant, then J is a
continuous function of the measure-theoretic entropy.
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The arguments adapt to open covers (Uy) and partitions .
So it is better to examine these measures locally:

Fix a k and find the topological average sample complexity
Asc(X, Uk, 0) = limpyoo 2 3 g clog N((Uk)s),

or do not take the limit on n, and study it as a function of n,

analogously to the symbolic or topological complexity
functions.

Similarly for the measure-theoretic version: fix a partition o
and study the limit, or the function of n.

Ascy (X, T, ) = lim — Z ccH

n—o00 N
SCn*



So we begin study of Asc for a fixed open cover as a function of n.

1
Asc(X, 0, Uy, n) = - Z cslog N(S).
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So we begin study of Asc for a fixed open cover as a function of n.

1
Asc(X, 0, Uy, n) = - Z cslog N(S).
SCn*

Example

©
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Figure: Graphs of two subshifts with the same complexity function but
different average sample complexity functions.
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Interesting example

Adjacency Graph  hiop Asc(10) Int(10)

i 0481 0399  0.254
SP\\ 0481 0377 0208

These SFTs have the same entropy and complexity functions
(words of length n) but different Asc and Int functions.
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Results in measure-theoretic setting

For a fixed partition o, we give a relationship between
Ascu(X, o, T) and a series summed over i involving the
conditional entropies H, (o | af°).

Idea

» View a subset S C n* as corresponding to a random binary
string of length n generated by Bernoulli measure B(1/2,1/2)
on the full 2-shift.

» For example {0, 2,3} C 5* «» 10110.

» The average entropy, H,(as), over all S C n*, is then an
integral and can be interpreted in terms of the entropy of a
first-return map to the cylinder A = [1] in a cross product of
our system X and the full 2-shift, .



Theorem

Let (X,B,u, T) be a measure-preserving system and o« a finite
measurable partition of X. Let A= [1] ={§ € £ : &y =1} and
B = oo X A the related finite partition of X x A. Denote by Tx«a
the first-return map on X x A and let P, = P/P[1] denote the
measure P restricted to A and normalized. Let cZ = 27" for all
S cn*. Then

1
ASCH(X, X, T) = EthpA(X X A, B, TX><A)-



Theorem

Let (X,B,u, T) be a measure-preserving system and o« a finite
measurable partition of X. Let A= [1] ={§ € £ : &y =1} and
B = oo X A the related finite partition of X x A. Denote by Tx«a
the first-return map on X x A and let P, = P/P[1] denote the
measure P restricted to A and normalized. Let cZ = 27" for all
S cn*. Then

1
ASCH(X, X, T) = EthpA(X X A, B, TX><A)-

Theorem
Let (X,B,u, T) be a measure-preserving system and o« a finite
measurable partition of X. Let cZ =27" for all S C n*. Then

le 1
Asc, (X, x, T) > Z —Hy (] «5).

Equality holds in certain cases (in particular, for Markov shifts)
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In the topological case the first-return map Tx x4 is not
continuous nor expansive nor even defined on all of X x A in
general, so known results about measures of maximal entropy and
equilibrium states do not apply. To maximize Int, there is the added
problem of the minus sign in

Int(X, U, T) =2Asc(X, U, T) — heop(X, U, T).

Maybe some modern work on local or relative variational principles,
almost subadditive potentials, equilibrium states for shifts with
infinite alphabets, etc. could apply? (Barreira, Mummert, Yayama,
Cao-Feng-Huang, Huang-Ye-Zhang, Huang-Maass-Romagnoli-Ye,
Cheng-Zhao-Cao, ...)

But the above theorem does give up some information immediately:
Proposition

When T : X — X is an expansive homeomorphism on a compact
metric space (e.g., a subshift), Asc, (X, T, «) is an affine upper
semicontinuous (in the weak* topology) function of W, so the set
of maximal measures for Asc, (X, T, «) is nonempty, compact, and
convex and contains ergodic measures (see Walters, p. 198 ff.).
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Markov Shift
» Consider the measure on the shift space (£,, o) given by s
stochastic matrix P = (Pj;) and fixed probability vector
p=(pP0 pPr ... pp-1) ie Y pj=1and pP=p.
» The measure pp , is defined as usual on cylinder sets by
Wp.plioi - .. ik] = piy Pigi =+ Pi_1i-

Example (1-step Markov measure on the golden mean shift)

Denote by Pyg € [0, 1] the probability of going from 0 to 0 in a
sequence of X113 C Xp. Then

Poo 1— Poo 1 1—P
P:< 1 0 >' 'D:(?*Poo 2*”83)

Using the series formula and known equations for conditional
entropy, we approximate Asc,, and Int,, for Markov measures on
SFTs.
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Calculations for one-step Markov measure
on the golden mean shift

o
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0.2 — Int,

0.1

o
0.0 0.2 0.4 0.6 0.8 1.0

Pao

Poo  hy Asc, Inty

0.618 0.481 0.266 0.051
0.533 0.471 0.271 0.071
0.216 0.292 0.208 0.124

» Maximum value of h, = hiop = log d when Pyg =1/
» Unique maxima among 1-step Markov measures for Asc,, and

Int,,
» The maxima for Asc, Int,, and hy are achieved by different

measures
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» Int,, appears to have a unique maximum among 2-step
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» The maxima for Asc, Int,, and hy are achieved by different
measures
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» Asc, appears to be strictly convex, so it would have a unique
maximum among 1-step Markov measures

> Int,, appears to have two maxima among 1-step Markov
measures on proper subshifts (Poo = 0 and P;; = 0).

» There seems to be a 1-step Markov measure that is fully
supported and is a local maximum for Int, among all 1-step
Markov measures.

» The maxima for Asc, Int,, and h, are achieved by different
measures.
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shift.
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Two-step Markov measure
on the golden mean shift

Pooo

Figure: Combination of the plots of h,,, Asc,,, and Int,, for two-step
Markov measures on the golden mean shift.



Conj. 5: On the 2-shift there are two 1-step Markov measures that
maximize Int,, (X, T, @) among all 1-step Markov measures. They
are supported on the golden mean SFT and its image under the
dualizing map 0 < 1.



Conj. 5: On the 2-shift there are two 1-step Markov measures that
maximize Int,, (X, T, @) among all 1-step Markov measures. They
are supported on the golden mean SFT and its image under the
dualizing map 0 < 1.

Intricacy for one-step Markov measure
on the full 2-shift




Conj. 6: On the 2-shift there is a 1-step Markov measure that is
fully supported and is a local maximum point for Int, (X, T, «)
among all 1-step Markov measures.



Conj. 6: On the 2-shift there is a 1-step Markov measure that is
fully supported and is a local maximum point for Int, (X, T, «)
among all 1-step Markov measures.

Intricacy for one-step Markov measure
on the full 2-shift

10 Poo




» The conjectures extend to arbitrary shifts of finite type and
other dynamical systems.



» The conjectures extend to arbitrary shifts of finite type and
other dynamical systems.

» We do not know whether there is a variational principle
supy Ascy (X, T, &) = Ascrop (X, T).



» The conjectures extend to arbitrary shifts of finite type and
other dynamical systems.

» We do not know whether there is a variational principle
supy Ascy (X, T, &) = Ascrop (X, T).

» Analogous definitions, results, and conjectures exist when
entropy is generalized to pressure, by including a potential
function which measures the energy or cost associated with
each configuration.



The conjectures extend to arbitrary shifts of finite type and
other dynamical systems.

We do not know whether there is a variational principle
supy Ascy (X, T, &) = Ascrop (X, T).

Analogous definitions, results, and conjectures exist when
entropy is generalized to pressure, by including a potential
function which measures the energy or cost associated with
each configuration.

First one can consider a function of just a single coordinate
that gives the value of each symbol.



The conjectures extend to arbitrary shifts of finite type and
other dynamical systems.

We do not know whether there is a variational principle
supy Ascy (X, T, &) = Ascrop (X, T).

Analogous definitions, results, and conjectures exist when
entropy is generalized to pressure, by including a potential
function which measures the energy or cost associated with
each configuration.

First one can consider a function of just a single coordinate
that gives the value of each symbol.

Maximum intricacy may be useful for finding areas of high
information activity, such as working regions in a brain
(Edelman-Sporns-Tononi) or coding regions in genetic
material (Koslicki-Thompson).
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